Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label mobile. Show all posts
Showing posts with label mobile. Show all posts

Thursday, October 12, 2023

6G won't wait. Will traditional MNOs still be the main customers when it arrives?

This post originally appeared in September 2023 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

 One line I heard yesterday at #ConnectedBritain that really struck me came from BT Group Network/Security head Howard Watson during his keynote.

He was hoping #6G arrived later rather than earlier, "For the Brisbane Olympics, not LA", ie 2032.

This is not the first time I've heard an MNO exec expressing a desire to let #5G run longer, before 6G prompts more Capex and infrastructure changes. They want to get payback on existing investments before thinking about the next round.

This is unsurprising. The industry itself now recognises that it overhyped 5G before launch, and completely forgot to mention that it would arrive in phases, with all the "cool stuff" really only arriving in later versions, with the features in 3GPP Releases 16, 17 & 18.

Instead, we started with 4G++ (ie non-standalone 5G, with sometimes higher speeds but not much else) and then the first versions of "proper 5G" with the Release 15 standalone cloud-native core.

5G SA gives somewhat lower latency, and some rudimentary QoS and other features, but it's far from the ubiquitous millisecond / gigabit / slicing nirvana that everyone promised in 2018.

I was skeptical from the beginning - and I'm still a "slice denier". (I think #networkslicing remains a critical strategic error and distraction for the industry). But my view is that the really useful stuff in 5G, such as time-synchronous networking, RedCap and vertical-specific elements such as FRMCS for railways, are still a long way from mainstream.

So I can understand that MNOs look at the proposed 6G timeline of 2030, and think "we're still making heavy work of moving to cloud-native 5G standardalone. How are we going to do successive iterations of R15 SA, R16, R17, R18, R19... and make money, all within 6 years?"

[Note: technically 6G should start with Release 21, but based on past experience we'll see R20, or maybe even R19, marketed as 6G by some MNOs]

There is a possible uncomfortable answer that's starting to get discussed quietly. What if 6G isn't primarily about MNOs, at least at first?

6G will happen in 2030, one way or another. The world's universities and R&D labs aren't going to down tools for two years, while MNOs are still trying to "monetise" 5G. There will be a bunch of technologies and standards that get called IMT2030 / 6G.

There might even be multiple standards, either because of geopolitics leading to regional versions, or because my niggling of IEEE and Wi-Fi Alliance eventually prompts them to submit a candidate 6G technology (#WiFi 9 or 10, I guess).

So the question then becomes - will traditional MNOs be the main buyers of 6G in the 2028-2030 timeframe? Or will it be enterprises, new-entrant and niche MNOs, infracos, neutral-hosts, satcos, governments and others building greenfield wireless networks?

Is the failure of 5G to live up to inflated expectations actually going to be the pivot point for the (slow) demise of the legacy MNO model? Are we watching #pathdependency effects in play?


 

Sunday, October 08, 2023

RCS messaging: still a zombie, but now wearing a suit

This post originally appeared on October 4 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

Yesterday I followed the Mobile Ecosystem Forum stream of its #RCSWorld conference, on #RCS #messaging, especially business messages. I thought it was time to get an update.
 
As regular followers know, I’m a long-time critic of RCS. I saw it announced in 2008, wrote reports & advised telco clients about its many problems in 2010-2013, called it a zombie tech in 2015 (“28 quarters later”) and have been sniping at it ever since, including at Google’s acquisition of Jibe and its attempt to turn it into Android’s equivalent of Apple #iMessage.
 
Some flaws have been addressed (it finally uses E2E encryption), while Google’s tightening control of its features has maybe fixed its “design by committee” paralysis and historic fragmentation. Google is now hosting the whole application for many MNOs, rather than telcos relying on (and paying for) in-network IMS integration, but with an implicit threat of end-running them if they don’t support the services to customers.

There's about 1.2bn phones with RCS active - mostly Google #Android but also about 200m in China. This has been driven by its adoption as the default messaging client on new phones, rather than by consumer download.

I didn't hear any stats on genuine active use - ie beyond just using it as a pseudo-#SMS/MMS app because it's the default. Numbers always seem to be monthly MAUs rather than meaningful DAUs. No anecdotes of teenagers who swapped from FB / WA / iMessage / WeChat / TikTok / whatever because RCS is cooler with better emojis, birthday greeting fireworks or cat-ear image filters.
 
To be fair, the conference name was misleading. Almost the entire event was about RCS Business Messaging (RBM) rather than personal or group messaging. It was about targeted marketing campaigns (that’s spam to most of us), customer interaction with so-called “brands”, multichannel whatnot, and blather about engagement and “digital” marketing

Apparently A2P revenues for SMS are flattening, but the addition of "rich" interactive in-messaging customer experience functions will reignite growth. One operator in the audience asked why the same forecasts have been shown (and not come true) for the past 4-5 years. Apparently it's too complex for most developers.

So the big innovation is "basic RCS" with 160 characters. SMS with a brand logo, a verification tick and read receipts. It's aiming at the #cPaaS market to get more devs/marketers onto the first rung & hope to catalyse more fancy use-cases later.
 
IMO this is why Apple isn’t going to support it anytime soon, despite Google's cringey social media exhortations. The notion RCS is a standard for P2P messaging is a smokescreen. It’s an ad & CRM platform, not an SMS replacement or default way to chat with friends. It’s not going to be the messaging equivalent of USB-C chargers & forced on Apple by the European Commission
 
In a nutshell, it’s still a zombie. But now it’s a zombie in a suit spamming you with ads and "engagement" while it eats your brain


 

.

Saturday, October 07, 2023

Train connectivity - is passenger Wi-Fi too linked to rail portals' needs?

This post originally appeared on Oct 5 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

It's always interesting to attend non-telecom industry events. Too often, we breathe our own smoke. Visiting another sector's conferences gives better perspective. Often, networks are less important than we imagine for "verticals".

Yesterday I chaired the Connectivity stream of the World Passenger Festival conference in Vienna, an event primarily for the rail industry, plus other forms of transport mobility. The speakers in my breakout covered Wi-Fi access onboard trains and at stations, plus how to manage video traffic. 5G was covered for on-train network backhaul, neutral-host provision and possible use-cases like AR-enabled tourism & urban mobility V2X safety for buses and bikes.

The rest of the conference and show floor was about passenger experiences more generally. Ticketing, sleeper trains, coordination with other types of transport, train-based tourism and so on. Plenty of talk about apps and "transformation" more broadly, but the network wasn't a priority.

There was also a rather muddled main-stage keynote on #5G by Accenture, with 2018-era references to millisecond latencies, network slicing and autonomous vehicles. It conflated normal MNO 5G with the long-promised critical-comms rail variant #FRMCS and bizarrely suggested they would coexist on converged, virtualised networks. A later chat on their booth with a more knowledgeable colleague gave a lot more clarity & agreement on the realities & drivers of operational connectivity for future rail - especially enabling ECTS (European Train Control System) for higher capacity on rail networks.

The rail industry is at the apex of a trend I discussed in a recent newsletter article and post - the need for customers to have reliable access to smartphone apps for ticketing, journey-planning, at-seat entertainment and catering etc. Travellers need to download passes, make payments and use QR codes.

This explains why so much of the on-train #WiFi strategy is linked to apps and portals, and much less to general wireless infrastructure, whether MNO or dedicated trackside/FRMCS.

Some rail Wi-Fi teams view cellular as a cost (for backhaul) or a rival that stops passengers seeing the portal and info/monetisation offers, when they directly access the Internet from phones. They filter or cache video use to reduce cost and congestion. One even tries to dissuade passengers from using cellular, to save 4G/5G network capacity for the train!

In my view, there is both too much "joined-up" thinking and too little. It's either 5G maximalism ("we don't need Wi-Fi on trains") or it directly links connectivity to the rail operator's own priorities, rather than passengers' real Internet access needs and expectations.

What is needed is integration in the right places and layers. Shared trackside masts and fibre, plus hybrid connectivity to trains from public 5G, trackside dedicated networks (including #private5G) and satellite, delivering good, neutral, fast on-train Wi-Fi AND cellular for passengers.

 



Wednesday, June 21, 2023

Spectrum: The shifting tone of the satellite industry

This post originally appeared on June 7 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

I'm in Brussels this week at the Forum Europe European Spectrum Management Conference.

There's a lot to discuss, especially around #6GHz and 3.8-4.2GHz and the role of unlicensed and local/shared bands, as well as the upcoming World Radio Conference WRC-23.

I'll have more to say, but here I just want to highlight one particular theme that has been evident over the last couple of days: the tone of the satellite sector, which is here in force, especially with GSOA and Intelsat.

In the past at these #spectrum events, the #satellite industry has turned up with a familiar script:

"Hi, we're from the satellite industry. Please don't take our spectrum. We help with defence, aviation & connecting the unconnected. Please don't take our spectrum. We work tightly with the mobile industry, doing backhaul & IoT and timing sync. They're our friends & vice versa. Oh, and did we mention our spectrum? Please don't take any more of it"

But this time, it's different. The message is now closer to:

"We're doing all ths cool new stuff, including for wireless broadband, direct to device and defence. So actually, we want to keep all our spectrum. And maybe give back the old #mmWave spectrum you took years ago, that the mobile industry hasn't even used. Seriously, you want *more* spectrum to be taken from us and pre-allocated to 6G now? Are you having a laugh?"

There was a whole panel on direct-to-device, and satellite has fought its corner on the upper 6GHz (it can coexist with low/medium power WiFi, but not high power 5G) and fixed satellite links in 4GHz band. The future-looking 6G panel started a fierce debate on 7-24GHz, which covers various of the satellite incumbent bands.

There's been a few references to South Korea's regulator reclaiming unused 28GHz licenses from MNOs that haven't used the band. And there's a broad opinion that mobile/IMT is not a friendly partner for spectrum-sharing, at least for national MNO macro networks at full power. (Local private networks are OK-ish, it seems).

"An IMT identification is an eviction notice - the incumbents must leave".

"It's disingenuous to discuss coexistence studies - we've been here before and know how it ends. It's not our first rodeo with the mobile industry"

Now clearly this year, in the last few months before WRC23, is when arguments get more vigorous. But some of the stuff at the #EUspectrum event has been seriously punchy - Intelsat asked whether Europe should be focused on primacy in an amorphous "race to 6G" or a more geopolitically-crucial "space race".

My view is that the #5G industry is seeing some chickens coming home to roost at the moment. It overpromised Release 18 features with Release 15 timelines, got mmWave spectrum years before it could be exploited, and have left politicians and regulators with egg on their faces.

Meanwhile, the satellite sector is positioning itself as super-cool and important. It has a swagger that is being noticed by policymakers, and for good reason.


 

Friday, April 28, 2023

6G must be indoor-primary and have a Wi-Fi candidate technology

This post originally appeared on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / subscribe to receive regular updates (about 1-3 / week)

I'm giving a lot of thought to #6G design goals, priorities & technology / policy choices. Important decisions are coming up. I'll be exploring them in coming weeks and months. Two important ones I see:

- 6G / #IMT2030 must be "indoor-primary"
- There must be a IEEE / Wi-Fi Alliance candidate tech for 6G

The first one is self-evident. The vast bulk of mobile use - and an even-larger % of total wireless use - is indoors. It's inside homes, offices schools, factories, warehouses, public spaces like malls and stadia - as well as inside vehicles like trains. Even outdoors, a large % of usage is on private sites like industrial complexes or hospital campuses.

Roughly 80% of mobile use is indoors - more if you include wireless streaming to smart TVs and laptops/tablets. By the 2030s 6G era, there will be more indoor wireless use for #industrialautomation, #gaming, education, healthcare, #robotics and #AR / #VR / #metaverse and so on.

This implies that economic, social, welfare and cultural upsides will be indoor-primary. 80%+ of any GDP uplift will be indoor-generated. This suggests 6G tech design & standards - and associated business models and regulation - should be indoor-oriented too.

The IEEE / #WiFi idea follows on from this. The default indoor wireless tech today is Wi-Fi. There is a lot of indoor cellular use, but currently 5G is supported poorly - and certainly not everywhere.

While 5G and future 6G indoor #smallcells, #neutralhost and repeaters / DAS are evolving fast, *nobody* expects true ubiquity. Indoor cellular will remain patchy, especially multi-operator. And many devices (eg TVs) don't have cellular radios anyway.

This means that WiFi - likely future #WiFi8 and #WiFi9 - will remain central to in-building connectivity in the 6G era, no matter how good the tech for reconfigurable surfaces or other cellular innovations become.

IEEE decided not to pitch WiFi6 formally for 5G / IMT2020, but instead just show it surpassed all the metrics. But "we could have done it if we wanted" isn't good enough. There are no government-funded "WiFi Testbed Programs" or "WiFi Innovation Centres of Excellence" because of this lower visibility.

Governments are ITU members and listen to it. If policymakers want the benefits of full connectivity, they need to support it with spectrum, targets and funding, across *all* indoor options.

And if the WiFi industry wants full / easy access to new resources, it needs to be an official 6G / IMT2030 technology. It needs access to IMT licensed spectrum, especially for local licenses with AFC.

This idea will be very unpopular among both cellular industry (3GPP pretends it is the "keeper of the G's") and the WiFi sector, which sees it as a lot of extra work & politics.

But I think it's essential for IMT2030 to embrace network diversity, plus ownership- & business-model diversity as central elements of 6G.

 

Sunday, July 24, 2022

New Report on Enterprise Wi-Fi: No, 5G is not enough

(Initially posted on LinkedIn, here. Probably best to use LI for comments & discussion)

Published this week: my full STL Partners report on Enterprise Wi-Fi. Click here to get the full summary & extract.

Key takeout: Telcos, MNOs & other service providers need to take Wi-Fi6 , 6E & (soon) 7 much more seriously. So do policymakers.

5G is not enough for solving enterprises' connectivity problems on its own. It has important roles, especially in Private 5G guise, but cannot replace Wi-Fi in the majority of situations. They will coexist.

Wi-Fi will remain central to most businesses' on-site connectivity needs, especially indoors, for employees, guests and IoT systems.

Telcos should support Wi-Fi more fully. They need a full toolkit to drive relevance in enterprise, not just a 5G hammer & pretend everything is a nail. CIOs and network purchasers know what they want - and it's not 5G hype or slice-wash.

Newer versions of Wi-Fi solve many of the oft-cited challenges of legacy systems, and are often a better fit with existing IT and networks (and staff skills) than 5G, whether private or public. 




Deterministic latency, greater reliability and higher density of devices make 6/6E/7 more suitable for many demanding industrial and cloud-centric applications, especially in countries where 6GHz spectrum is available. Like 5G it's not a universal solution, but has far greater potential than some mobile industry zealots seem to think.

Some recommendations:

- Study the roadmaps for Wi-Fi versions & enhancements carefully. There's a lot going on over the next couple of years.
- CSP executives should ensure that 5G "purists" do not control efforts on technology strategy, regulatory engagement, standards or marketing.
- Instead, push a vision of "network diversity", not an unrealistic monoculture. (Read my recent skeptical post on slicing, too)
- Don't compare old versions of Wi-Fi with future versions of 5G. It is more reasonable to compare Wi-Fi 6 performance with 5G Release 15, or future Wi-Fi 7 with Rel17 (and note: it will arrive much earlier)
- 5G & Wi-Fi will sometimes be converged... and sometimes kept separate (diverged). Depends on the context, applications & multiple other factors. Don't overemphasise convergence anchored in 3GPP cores.
- Consider new service opportunities from OpenRoaming, motion-sensing and mesh enhancements.
- The Wi-Fi industry itself is getting better at addressing specific vertical sectors, but still needs more focus and communication on individual industries
- There should be far more "Wi-Fi for Vertical X, Y, Z" associations, events and articles.
- Downplay clunky & privacy-invasive Wi-Fi "monetisation" platforms for venues and transport networks.
- Policymakers & regulators should look at "Advanced Connectivity" as a whole, not focus solely on 5G. Issue 6GHz spectrum for unlicenced use, ideally the whole band
- Support Wi-Fi for local licensed spectrum bands (maybe WiFi8). Look at 60GHz opportunities.
- Insist Wi-Fi included as an IMT2030 / 6G candidate.

See link for report extract & Exec Summary


Thursday, July 14, 2022

Network Slicing is a huge error for the 5G industry

(Initially posted on LinkedIn, here. Probably best to use LI for comments & discussion)

I've started calling myself a "Slice Denier" or "Slicing Skeptic" on client calls and conference speeches on #5G.

Increasingly, I believe that #NetworkSlicing is one of the worst strategic errors made by the #mobile industry, since the catastrophic choice of IMS for communications applications. The latter has led to the fiascos of #VoLTE and #RCS, and loss of relevance of telcos in communications more broadly.

At best, slicing is an internal toolset that might allow telco operations or product teams (or their vendors) to manage their network resources. For instance, it could be used to separate part of a cell's capacity for FWA, and dynamically adjust that according to demand. It might be used as an "ingredient" to create a higher class of service for enterprise customers, for instance for trucks on a highway, or as part of an "IoT service" sold by MNOs. Public safety users might have an expensive, artisanal "hand-carved" slice which is almost a separate network. Maybe next-gen MVNOs.

(I'm talking proper 3GPP slicing here - not rebranded QoS QCI classes, private APNs, or something that looks like a VLAN, which will probably get marketed as "slices")

But the idea that slicing is itself a *product*, or that application developers or enterprises will "buy a slice" is delusional.

Firstly, slices will be dependent on [good] coverage and network control. A URLLC slice likely won't work reliably indoors, underground, in remote areas, on a train, on a neutral-host network, or while roaming. This has been a basic failure of every differentiated-QoS monetisation concept for many years, and 5G's often-higher frequencies make it worse, not better.

Secondly, there is no mature machinery for buying, selling, testing, supporting. price, monitoring slices. No, the 5G Network Exposure Function won't do it all. I haven't met a Slice salesperson yet, or a Slice-procurement team.

Thirdly, a "local slice" of a national 5G network will run headlong into a battle with the desire for separate private/dedicated local 5G networks, which may well be cheaper and easier. It also won't work well with the enterprise's IT/OT/IP domains, out of the box.

Also there's many challenges getting multi-operator slices, device OS links to slice APIs, slice "boundary controllers" between operators, aligning RAN and core slices, regulatory questionmarks and much more.

To use an appropriate analogy, consider an actual toaster, with settings for different timing, or a setting for bagels. Now imagine Toaster 5.0 with extra software smarts, perhaps cloud-native. Nobody wants to buy a single slice of toast, or a software profile. They'll just buy a toaster for their kitchen, or or get an "integrated breakfast solution" including toast in a cafe. They won't care about the slicing software. The chef might, but it's doubtful.

If you see 5G Network Slicing as a centrepiece of future "monetisation", you're in for an unpleasant smell of burning, and probably a blaring smoke alarm too.


 

Thursday, January 06, 2022

Private 4G/5G: Three Markets, Not One

Private 5G segmentation: Introduction & Overview

Private 4G and 5G networks are rapidly becoming mainstream. This isn’t news.

But from recent conversations, client engagements and events, it’s becoming increasingly clear that many don’t quite grasp how private cellular use-cases are segmented – and why it’s going to get even more complex in the next 2-3 years.

In reality, this isn’t really “a market” in a singular sense. It’s currently at least three separate and distinct markets, with only minimal overlap at present. The main common thread is the deployment of cellular (3GPP 4G/5G) networks by non-MNOs.


 

A common fallacy involves talking about “vertical industries” as the main way to divide up the sector. But that doesn’t really work, as any given vertical has dozens of sub-categories and hundreds of potential applications and deployment scenarios. For instance, the “energy vertical” covers everything from a gas station, to an offshore windfarm, a 1000km pipeline or an oil-futures trading floor in a financial district.

Verticals are useful ways to divide up sales and marketing efforts, and make sense for cohesive reports, papers or webinars, but also blend together elements of three very different markets for private 4G/5G:

  •        Critical communications networks
  •        Indoor mobile phone networks
  •        Cloud and IT/IoT networks
No alt text provided for this image

It is worth discussing each of these in turn.

Critical communications networks

These have made up the bulk of major private network deployments over the last 5-10 years. They are typically deployed for utilities, oil & gas, mining, public safety, airports and military purposes. Often, they are used in rugged environments, for human communications (typically push-to-talk), as well as in-vehicle gateways and specific automation systems such as remote sensors and monitoring systems. The specialised GSM-R system for railways fits in this category as well.

Usually, they are replacing alternatives such as private mobile radio (PMR), TETRA and microwave fixed-links. They have typically been packaged and deployed by specialist integrators for sectors like oil-rigs or field-deployment by military units. There is limited “replicability”. They vary widely in size, from a single portable network for public safety, up to a national network for a utility company.

There is little need for interconnection with public mobile networks; indeed it may be specifically avoided in order to maintain isolation for optimal security and “air-gapping” for critical applications.

Most are 4G, reflecting mission-criticality and its frequent need for proven, mature technology and wide product availability. 5G is however used in certain niches and is being tested widely, although the most useful features will only arrive when Release 16/17 versions are commercialised in the next few years.

Indoor mobile phone networks

This includes some of both the oldest and newest deployments. Early local private 2G/3G networks essentially used GSM phones and thin slices of light-licensed/unlicensed spectrum to replace DECT cordless phones in a few markets – notably the UK, Netherlands and Japan.

They could also work with multi-SIM phones to blend public and private modes. I first saw an enterprise-grade GSM picocell in 2001, and an on-premise core network box in 2005. There are still several thousand such networks around, including ones updated to 4G and some that run on ships or onboard private jets.

More recently, there has been growing interest in using private 4G/5G to create neutral host networks for in-building, or on-campus coverage. There are multiple models for neutral host (I’ve counted around 10-15 variations), with some needing a full local network with its own spectrum and core, and others just relying on the tenant MNOs’ active equipment. In the US, CBRS-based options may turn out to be among the more sophisticated.

Whether used to support public MNOs more effectively than alternative indoor systems such as DAS (distributed antenna systems), or perhaps for linking to a UC / UCaaS system for enterprise voice, the main use-cases are for phones. They are almost always deployed for a single building or campus.

This segment is the most likely to require interconnection with the public mobile infrastructure, as well as supporting normal “phone calls” rather than push-to-talk voice.

Cloud and IT/IoT network

This category of private cellular is probably receiving the greatest attention from many newcomers to the sector, as well as external observers such as analysts and journalists.

It ties in with many of the newest trends around cloud and edge-computing, AI and machine vision in factories, robots and AGVs in warehouses, security cameras and more general IoT / smart building use-cases. It aligns with many of the "transformation" projects in IT, plus some parts of the OT (operational technology) space such as smart manufacturing.

As such, it tends to be viewed as a complement – or alternative – to other IT-type network technologies like Wi-Fi and fibre-based ethernet. And given that many of the use-cases have a heavy cloud (or at least multi-site WAN) orientation, there is more acceptance of virtualisation of cores and perhaps in future the RAN.

This is currently the area with the greatest amounts of experimentation and innovation – although actual large-scale operational deployments are still relatively few. There is more focus on 5G than 4G, although that might change as executives learn more about the practicalities and economics. Vendors often orient on the soundbite that "private 5G should be as easy as Wi-Fi".

There is a major focus on automation, replicability and ease-of-use. This was exemplified by the recent AWS Private 5G announcement, which seems squarely aimed at this segment.

However, there is perhaps a divide opening between the IT-type scenarios (where it can be seen as a sort of enterprise Wi-Fi-on-steroids vision) and OT deployments in which it gets embedded into larger industrial automation or other systems, such as factory robots or dockside cranes. In the latter scenarios we can see companies like Siemens integrating cellular into their wider systems, just as they have historically used Wi-Fi/WLAN and fibre.

Although the main focus is on building / campus networks for this model, it may also extend to larger domains such as smart cities, as well as multi-location users such as retail chains.

There is some overlap with the critical communications segment, but that is fairly rare at the moment, especially given the lesser role (and trust) of public cloud in many of those areas.

In addition, there is a fair amount of talk about interconnection with the public mobile network (especially where telcos are acting as vendors), but in reality, that's a secondary consideration that doesn't go much beyond a PowerPoint slide for now. There are certain exceptions which are interesting, but they're far from typical.

Conclusions and the Future of Private Networks Segmentation

At present, the "private 5G market" is actually at least three separate markets. And it's mostly about private 4G rather than 5G. Critical communications networks, indoor mobile phone networks and cloud/IT/IoT networks are largely distinct in terms of motivations, channels, economics, devices and applications. There is much less overlap than many observers expect.

(There are also smaller adjacent sectors such as community networks, 4G/5G-based FWA and other specialities).

But over the next 1-2 years, we can expect the three bubbles on the Venn diagram to overlap more – although asymmetrically. Critical and cloud/IoT networks will start to become hybridised. Critical 4G/5G networks in mines or utility sites will start to support extra IT-like applications, for instance (although that probably won't need formal network slicing).

Some enterprise private cellular networks will examine adding neutral-host and inbound roaming or interconnect from public MNOs' subscribers – although there are assorted regulatory and security/operational hurdles to address.

There won't be much overlap between critical networks and neutral/guest cellular, though. Nobody's smartphone will be roaming from their normal consumer 5G network onto the utility company's private infrastructure, I think. A few employees' devices might have special arrangements though.

But we will also see the emergence of a number of additional bubbles on the chart, some of which are more like "quasi-private" models, such as outdoor neutral host networks, selling wholesale capacity to MNOs. There will be various forms of Wi-Fi integration (but probably less than many expect / want). And we will undoubtedly see maturity of both cloud-delivered private cellular like AWS's, and (belatedly) some sort of MNO-based network slice integration.

And if you want an "outlier" to ponder, consider the potential for grassroots private "consumer-grade" 5G. There's a lot of hype about things like Helium's decentralised and blockchain-based model, but I'm deeply sceptical of this (that's for another post, though). More likely is the emergence of a true Wi-Fi hotspot approach, where we start to see lightweight "free 5G" options, using unlicensed (or maybe CBRS GAA) spectrum, with a cheap core and small cell. Scan the QR code next to the barista to download your eSIM, and you're good to go….

 



The bottom line is that the private 4G/5G market is complex and nuanced. Market statistics frequently combine everything from a nationwide utility's or railway's critical infrastructure, to a few small-cells connecting up digital signs in a mall car-park. It's easy to assume it's all about millisecond-latency robots zipping about factories, rather than a security guard with a handheld radio, or indoor network coverage for a hotel.

Operators, vendors, enterprises and governments need to delve a bit more deeply than just talking about "verticals" for private cellular, or else they risk making errors with their product portfolios or regulatory direction.

Dean Bubley (@disruptivedean) is a wireless technology analyst & futurist, who advises a broad range of companies and institutions active in the 5G, Wi-Fi and cloud marketplaces. He has covered private cellular networks for more than 20 years. He is a regular speaker and moderator at live and virtual events. Please get in touch on LinkedIn or via information AT disruptive-analysis DOT com for advisory or speaking requests.

#Private5G #Private4G #CriticalCommunications #5G #IoT #IIoT #Cloud #WiFi #verticals

Monday, November 29, 2021

Update: Recent Posts & Themes

(This article was initally posted on my LinkedIn newsletter. If you are not already signed up, please subscribe here)

I have a couple of other deep-dive themes cued up for articles in coming weeks, but I wanted to put out a quick newsletter update covering a few recent themes, posts and events that have been occupying me.


 

The last month has featured a lot of thinking, speaking & client engagements on private 5G, infrastructure-sharing and neutral-host business models, network slicing and capability/API exposure, Wi-Fi 6E & 6GHz, Open RAN and the interaction of cellular & other wireless technologies.

Some recent short-form posts that you may have missed:

  • Telecom operators (and their partners & regulators) should be giving as much consideration to *buying* APIs and capabilities as selling them - LINK
  • Thoughts on the Ericsson / Vonage acquisition - LINK
  • Should we be thinking more about "micro-churn" incidents, where subscribers temporarily switch between operators, using technologies such as eSIM? - LINK
  • Want me to speak at, or moderate your 2022 event? Or present at an internal workshop or offsite? - LINK
  • RCS messaging is still a purposeless zombie technology, continuing to eat brains after 13 years. Google's involvement hasn't changed much - LINK
  • The telecoms industry still hasn't gone beyond telephony, to think more broadly about "voice" services & applications - LINK

I've been to a couple of recent "verticals" events, about networking in ports and for railways. There's a lot of interest in private cellular - but also a huge amount of emphasis on Wi-Fi, including specialised versions with 60GHz or unique forms of QoS intended for industrial or trackside use.

I also presented on a webinar recently on behalf of iBwave, about the scope for Private 4G/5G networks for utilities and energy companies (LINK to view on-demand). Watch out for an upcoming eBook on the same topic. Another webinar on the competiton/convergence between Wi-Fi6 and 5G was for Spirent (LINK


 

Scott and Iain at Telecoms.com invited me onto their weekly podcast for a (rather irreverent) chat about the current trends and news from the industry, over a couple of beers. We took aim at 5G, the Metaverse, Open RAN & a lot more. YouTube link embedded above!

In addition, I moderated a panel on Infrastructure Sharing for the 5G Techritory event. I'm not sure if an archived version will be put online, but keep a watch out for it here.

And on a personal note, I also took part in my first improv comedy performance. If you book me to speak at one of your events, I can't promise to wear the same shirt as in the picture, but I will certainly be happy to make things up on the spot spontaneously, or deal with any hecklers ruthlessly!

#5G #WiFi #verticals #PrivateLTE #Private5G #mobile #telecoms #spectrum #voice #messaging #networkslicing #neutralhost #regulation

Friday, October 01, 2021

5G hype and exaggeration - be clear and realistic about your claims!

 This was originally posted on my LinkedIn (here) & the main comment thread is on LI

I'm getting really fed up with a lot of the hype and exaggeration around #5G at the moment, especially PR and marketing puff that creates unclear or misleading claims. It's damaging to the credibility of the industry overall & the specific organisations involved.

In recent weeks I've seen examples of:

  • "Ultra-low #latency" claimed for a manufacturing network that uses non-standalone 5G (so, using a 4G core network & incapable of getting anywhere near 1 millisecond)
  • Augmented reality demos claimed as 5G when actually they're using Wi-Fi or a wired tether
  • Use of a 5G fixed-wireless access link to a building (distributed with #WiFi locally via a hotspot or router) leading to an application described as 5G-enabled
  • A healthcare application with an internal diagnostic wireless camera within the patient's body, connecting to an external or gateway or handheld. The press release was vague on which bit of the solution was 5G, but a social media reply asserted it was a "virtual assistant" " (5G? really?) and refused to detail the system publicly, trying to get me to take the discussion offline
  • A CBRS "hotspot" described as 5G, despite no 5G #CBRS standalone standards or devices yet being available yet
  • 60GHz wireless (mostly using 802.11a or y) described as "5G" because it might be able to connect to a 5G core. There is no 60GHz 5G NR yet.
  • Spurious claims that 5G will generate $Xbn in GDP, or save Y tons of CO2. What's the baseline for 4G/other wireless & what's the uplift attributable to 5G? What % of CO2 savings are from the wireless rather than 100 other system elements, or are you double-counting?
  • Regular comments that compare performance of old versions of WiFi with future versions of 5G. Rather than, say, comparing WiFi 6E vs. 5G Rel 16, or WiFi7 vs. Rel 17.
  • Cliched use of "billions of IoT devices" when we all know only a tiny % will ever connect with 5G
  • Small 5G pilots being deliberately misused to imply large-scale or “production” use by a company.


The commentary is often along the lines of "Oh, well it might be proper 5G in the next version. This just the demo".

In which case, be honest and transparent and SAY SO CLEARLY.

Do not just release a press statement claiming yet another wondrous 5G use case. Be specific:

  • Is it *actually* 5G? Or is this just using 5G as a buzzword?
  • Which specific wireless connection in the solution uses 5G? Between which points / devices?
  • What version/features of 5G is used? What frequency band & coverage is needed?
  • What technology was used in past for similar solutions? What problems does 5G fix?
  • Does the application work equally well over other wireless technologies such as 4G or Wi-Fi6?


It's not just marketing - this actually matters, as things like government funding or spectrum policy may be justified on the basis of spurious claims.

Let's have some more honesty here about
what 5G can do today & what might be possible tomorrow. And let's all call out the chancers in public.

 

This was originally posted on my LinkedIn (here) & the main comment thread is on LI