Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label indoor. Show all posts
Showing posts with label indoor. Show all posts

Friday, October 06, 2023

Indoor wireless & the need for unlicensed 6GHz

This post originally appeared on October 2 on my LinkedIn newsletter, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please subscribe / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

 

Note: This article has been commissioned by the Dynamic Spectrum Alliance, based on my existing well-known analysis and positions, which I have been discussing for many years both publicly and privately. I believe that in-building wireless - irrespective of technology - receives far too little attention from policymakers and regulators. 6GHz should be indoor-primary spectrum.


Abstract & summary: The vast bulk of wireless data traffic today is for indoor applications. In future, in-building wireless will become even more important. It is ideally-suited to 6GHz spectrum, made available on an unlicensed basis. A licensed model for 5G mobile in 6GHz would be unable to deliver coverage consistently for more than a small number of sites.

Indoor wireless is already critical & often overlooked

Industry estimates suggest that 60-80% of cellular data is delivered to indoor users, predominantly on smartphones. Additional statistics shows that smartphones also typically consume another 2-5x the cellular data volume on Wi-Fi, almost all of which is indoors or in vehicles. In other words, 90%+ of total smartphone data is consumed inside buildings.

In addition, residential fixed broadband traffic volumes are roughly 10-20x that of mobile broadband, with final delivery mostly over Wi-Fi, often to non-smartphone devices such as smart TVs, laptops, game consoles and voice assistants.

Outside the consumer market, a great deal of non-residential wireless connectivity is also indoors – healthcare, education, manufacturing, conventions, hospitality and office environments are all increasingly dependent on wireless, especially with the rise of industrial automation systems, IoT, robots, connected cameras and displays. These map to the rise in cloud- and video-based business processes.

Most wireless uses & devices are indoor-centric

This does not imply that outdoor wireless use is either trivial or unimportant. Most obviously, everyone uses their phones for calling, messaging, mapping and various transport and other apps while on-the-move. Vehicle connectivity is becoming essential, as well as wireless use for safety, utilities and smart-city infrastructure. Some sectors such as agriculture, logistics and construction are predominantly outdoor-oriented, albeit often at specific locations and sites.

But to a rough approximation, if 80%+ of wireless use is indoors, then 80%+ of economic and social benefit of wireless will accrue indoors as well. This applies irrespective of the technology involved – Wi-Fi, 4G/5G cellular, or even Bluetooth.

Future growth of indoor wireless

The demands for indoor connectivity are likely to grow in both scale and scope in coming years. There will be huge demand for high-throughput, low-latency access for both consumer and enterprise use-cases.

  • Gigabit broadband, especially delivered with fibre, is becoming the default for both residential and business premises. In the medium term, we can expect 10Gig services to become more common as well. In many cases, the bottleneck is now inside the building, and local wireless systems need to keep pace with the access network.
  • There is a growing array of demanding devices and applications connected inside homes and enterprises premises. 4K and 8K screens, automation systems, healthcare products, AR/VR systems, cameras for security and industrial purposes, robots and much more.
  • Wireless devices will increasingly be located in any room or space inside a building, including bedrooms, garages, basements, meeting rooms, factory-floors and hospital operating theatres.
  • The density of devices per-building or per-room will increase exponentially. While some will be low-traffic products such as sensors, ever more appliances and systems will feature screens, cameras and cloud/AI capabilities demanding greater network performance.
  • There will be growing emphasis on the efficiency of networks, in terms of both energy and spectrum usage. “Blasting through walls” with wireless signals will be viewed negatively on both counts.

Yet only some policymakers and regulators have explicit focus on indoor wireless in their broadband and spectrum policies. There has been some positive movement recently, with regulators in markets such as the UK, Germany, Canada and Saudi  Arabia addressing the requirements. But it is now time for all governments and regulators to specifically address indoor wireless needs – and acknowledge the need for more spectrum, especially if they eventually want to achieve “gigabit to each room” as a policy goal.

Wi-Fi can satisfy indoor requirements, but needs 6GHz

Almost all indoor devices discussed here have Wi-Fi capabilities. A subset have 5G cellular radios as well. Very few are 5G-only. This situation is unlikely to change much, especially with a 5-10 year view.

Yet Wi-Fi faces a significant limit to its performance, if it just has access to traditional 2.4GHz and 5GHz bands. Not only are these limited in frequency range, but they also have a wide variety of legacy devices, using multiple technologies, that must coexist with any new systems.

While mesh systems have helped extend the reach to all rooms in a home, and Wi-Fi 6 brings new techniques to improve performance and device density in consumer and enterprise settings, much more will be required in future.

Now, Wi-Fi 6E and 7 generations are able to use the 6GHz band. This adds up to 1.2GHz of extra spectrum, with almost no sources of interference indoors, and almost no risk of indoor use creating extra interference to incumbent outdoor users, especially at lower power levels.

6GHz Wi-Fi would be able to address all the future requirements discussed in the previous section, as well as reducing system latency, improving indoor mobility and providing greater guarantees of QoS / reliability.

6GHz 5G is unsuitable for indoor use, and of limited use outdoors

By contrast, 6GHz is a poor fit for indoor 5G. Most buildings will be unable to use outdoor-to-indoor propagation reliably, given huge propagation challenges through walls. This would be hugely wasteful of both energy and spectrum resource anyway. This situation will worsen in future as well, with greater use of insulated construction materials and glass.

That leaves dedicated indoor systems such as small cells or distributed antenna or radio systems. Current DAS systems cannot support 6GHz radios – most struggle even with 3.5GHz. It may be possible to upgrade some of the more advanced systems with new radio heads, but few building owners would be willing to pay, and almost no MNOs would. In any case, only a fraction of buildings have indoor cellular systems, especially beyond the top tier of shopping malls, airports and other large venues.

The industry lacks the human and financial resources to implement new 6GHz-capble indoor systems in more than a tiny proportion of the millions of buildings worldwide, especially residential homes and small businesses.

Enabling public 5G services to work reliably indoors with 6GHz is therefore a decade-long project, at least. It would likely be the mid-2030s before 5G (or 6G) devices could routinely use 6GHz inside buildings. Lobbyist estimations of the notional GDP uplift from IMT use of the band ignore both the timing and the practical challenges for indoor applications. A very heavy discount % should be applied to any such calculations, even if the baseline assumptions are seen as credible.

Private 5G systems in factories or warehouses could theoretically use 6GHz licensed cellular, but most developed countries now have alternative bands being made available on a localised basis, such as CBRS, 3.8-4.2GHz or 4.9GHz. Many countries also have (unused) mmWave options for indoor private 5G networks. In theory, 5G systems could also use an unlicensed 6GHz band for private networks, although previous unlicensed 4G variants in 5GHz never gained much market traction.

It is worth noting that there are also very few obvious use-cases for outdoor, exclusive-licensed 6GHz for 5G either, beyond a generic increment in capacity, which could also be provided by network densification or other alternative bands. Most markets still have significant headroom in midband 3-5GHz spectrum for 5G, especially if small cells are deployed. The most-dense environments in urban areas could also exploit the large amount of mmWave spectrum made available for cellular use, typically in the 24-28GHz range, which is already in some handsets and is still mostly unused.

Conclusions

Regulators and policymakers need to specifically analyse the use and supply/demand for indoor wireless, and consider the best spectrum and technology options for such applications and devices. Analysis will show that in-building wireless accounts for the vast bulk of economic and social benefits from connectivity.

This is best delivered by using Wi-Fi, which is already supported by almost all relevant device types. With the addition of 6GHz, it can address the future expected growth delivered by FTTX broadband, as well as video, cloud and AR/VR applications.

The ultra-demanding uses that specifically require cellular indoors can use existing bands with enhanced small cells and distributed radios, neutral-host networks, or private 5G networks in the 3-5GHz range. There is also the ample mmWave allocations for 5G.

A final fundamental element here is timing. 6 GHz Wi-Fi chipsets and user devices are already shipping in their 100s of millions. Access points are widely available today and becoming more sophisticated with Wi-Fi 7 and future 8+ versions. By contrast, 5G/6G use of the band for indoor use is unlikely until well into the next decade, if at all.

Indoor wireless is critically important, growing, and needs Wi-Fi.

And Wi-Fi needs 6GHz.

 

Thursday, June 29, 2023

5G data traffic growth - the devil (FWA) is in the detail

This blog combines two separate, linked LinkedIn articles published in June 2023 on consecutive days. The original posts and comment threads are here and here.

Measuring #mobile data traffic is important for operators, vendors, and policymakers.

As I've said before, we should use *good* #metrics to measure the #telecoms industry, rather than just *easy* metrics. This post is an example of what I mean.

Yesterday, Ericsson released its latest Mobility Report. It's always an interesting trove of statistics on mobile subscribers, networks and usage, with extra topical articles, sometimes written by customers or guests.

While obviously it's very oriented to cellular technologies and has an optimistic pro-3GPP stance, it has a long pedigree and a lot of work goes into it. It's partly informed by private stats from Ericsson's real-world, in-service networks run by MNO customers.

This edition includes extra detail, such as breaking out fixed-wireless access & separating video traffic into VoD #streaming (eg Netflix) vs. social media like TikTok and YouTube.

It had plenty of golden "information nuggets". For instance, traffic density can be 500-1000x higher in dense urban locations than sparse rural areas. I'll come back to that another time.

Global mobile data grew 36% from Q1'22 to Q1'23. The full model online predicts 31% growth in CY2023, falling to just 15% in 2028, despite adding in AR/VR applications towards the end of the decade. That's a fairly rapid s-curve flattening.

For Europe, MBB data growth is predicted at 29% in 2023, falling to only 12% in 2028. That's a *really* important one for all sorts of reasons, and is considerably lower than many other forecasts.

But what really caught my eye was this "#FWA data traffic represented 21% of global mobile data traffic at the end of 2022". Further, it is projected to grow much faster than mobile broadband (MBB) and account for *30%* of total traffic in 2028, mostly #5G. When the famous "5G triangle" of use-cases was developed by ITU, it didn't even mention FWA.

However, the report didn't break out this split by region. So I decided to estimate it myself based on the regional split of FWA subscribers, which was shown in a graphic. I also extended the forecasts out to 2030.

I then added an additional segmentation of my own - an indoor vs outdoor split of MBB data. I've pegged this at 75% indoors, aligning with previous comments from Ericsson and others. Some indoor MBB is served by dedicated in-building wireless systems, and some is outdoor-to-indoor from macro RAN or outdoor small cells.

The result is fascinating. By the 2030, it is possible that over 40% of European 5G data traffic will be from FWA. Just 14% of cellular data will be for outdoor mobile broadband. So what's generating the alleged 5G GDP uplift?

That has massive implications for spectrum policy (eg on #6GHz) and proposed #fairshare traffic fees. It also highlights the broad lack of attention paid to indoor cellular and FWA.

Note: This is a quick, rough estimate, but it's the type of data we need for better decisionmaking. I hope to catalyse others to do similar analysis.

 


A separate second post then looked at the policy aspects of this:

Yesterday's post on mobile data traffic - and contribution from 5G FWA and indoor use - seems to have struck a chord. Some online and offline comments have asked about the policy implications.

There are several conclusions for regulators and telecoms/infrastructure ministries:

- Collect more granular data, or make reasoned estimates, of breakdowns of data traffic in your country & trends over time. As well as #FWA vs #MBB & indoor vs outdoor, there should be a split between rural / urban / dense & ideally between macro #RAN vs outdoor #smallcell vs dedicated indoor system. Break out rail / road transport usage.
- Develop a specific policy (or at least gather data and policy drivers) for FWA & indoor #wireless. That feeds through to many areas including spectrum, competition, consumer protection, #wholesale, rights-of-way / access, #cybersecurity, inclusion, industrial policy, R&D, testbeds and trials etc. Don't treat #mobile as mostly about outdoor or in-vehicle connectivity.
- View demand forecasts of mobile #datatraffic and implied costs for MNO investment / capacity-upgrade through the lens of detailed stats, not headline aggregates. FWA is "discretionary"; operators know it creates 10-20x more traffic per user. In areas with poor fixed #broadband (typically rural) that's potentially good news - but those areas may have spare mobile capacity rather than needing upgrades. Remember 4G-to-5G upgrade CAPEX is needed irrespective of traffic levels. FWA in urban areas likely competes with fibre and is a commercial choice, so complaints about traffic growth are self-serving.
- Indoor & FWA wireless can be more "tech neutral" & "business model neutral" than outdoor mobile access. #WiFi, #satellite and other technologies play more important roles - and may be lower-energy too. Shared / #neutralhost infrastructure is very relevant.
- Think through the impact of detailed data on #spectrum requirements and bands. In particular, the FWA/MBB & indoor splits are yet more evidence that the need for #6GHz for #5G has been hugely overstated. In particular, because FWA is "deterministic" (ie it doesn't move around or cluster in crowds) it's much more tolerant of using different bands - or unlicensed spectrum. Meanwhile indoor MBB can be delivered with low-band macro 5G, dedicated in-building systems (perhaps mmWave), or offloaded to WiFi. Using midband 5G and MIMO to "blast through walls" is not ideal use of either spectrum or energy.
- View 5G traffic data/forecasts used in so-called #fairshare or #costrecovery debates with skepticism. Check if discretionary FWA is inflating the figures. Question any GDP impact claims. Consider how much RAN investment is actually serving indoor users, maybe inefficiently. And be aware that home FWA traffic skews towards TVs and VoD #streaming (Netflix, Prime etc) rather than smartphone- or upload-centric social #video like TikTok & FB/IG.

Telecoms regulation needs good input data, not convenient or dramatic headline stats.

 

Friday, June 23, 2023

Connectivity on trains is hard - but both Wi-Fi and cellular need to be provided for passengers

This post originally appeared on May 24 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

 There have been recent headlines about the possible ending of on-train passenger #WiFi services in the UK. It is deeply controversial.

Apparently the Department for Transport (DfT), United Kingdom has insisted rail WiFi must be "justified financially". It's unclear if that means by extra ticket sales, higher customer satisfaction, or the use of WiFi for #train operational functions like cameras and wireless payment terminals.

I hope it's not referring to so-called "monetisation" by customers paying for WiFi, or being served adverts. On trains, WiFi is a basic amenity, like toilets or power sockets.

That said, train WiFi in the UK is often problematic. It uses clunky captive portals, and often old access points & slow/patchy 4G backhaul. It often fails to work well, or at all. It sometimes blocks video or VPNs. By contrast, in-station WiFi is run separately - and often much better.

Public cellular coverage on the rail network is also poor. Many rail lines run through cuttings and tunnels with limited room for trackside infrastructure & poor lines-of-sight to cell towers. The recent Department for Science, Innovation and Technology Wireless Infrastructure Strategy highlighted poor #railway #wireless coverage & pushed for regular monitoring and access to trackside fibre.
 
What should DfT, DSIT, Network Rail, Train Operating Companies and the future restructured Great British Railways Transition Team (GBRTT) do?
 
- Recognise both cellular & WiFi are essential for passengers, especially on long-distance trains where laptops are common
- Understand that cellular - especially #5G - has problems with signals reaching inside train carriages
- Don't underestimate forecasts for future data use. Add in uplink as well as downlink, and think about latency. Trains may need 1-5 Gbps in the medium term, via a mix of cellular & WiFi.
- Ensure on-train WiFi is easy to use & easily-upgraded. No captive portals, no “monetisation” with ads/data capture & a clear roadmap for regular upgrades. No blocking of any apps, especially VPNs and video. Apply Net Neutrality rules.
- Federation or roaming between on-train & station WiFi systems, extending to smart cities & metro bus/train/tram WiFi over time
- Easier access for MNOs / #neutralhosts to build trackside or near-track infrastructure & use gantries & fibre assets
- Decouple passenger connectivity needs from future critical #FRMCS deployment. They have different timing/cadence & investment cases
- Look at trackside 5G neutral host networks delivered with “excess” spectrum from any future 4-3 merger of MNOs
- Insist on-train gateways are modular & can use a dynamic mix of public 5G, trackside wireless & eventually satellite in remote areas. Ensure they are easily upgradeable without trains being taken out of service
- Upgrade on-train signal repeaters & look at window-etching for better outdoor-to-indoor performance

Note: I wrote this on WiFi on a train back to London from this week’s Wi-Fi NOW conference.


 

Saturday, April 29, 2023

6G convergence or "network of networks" must be bi-directional, not assume a 3GPP umbrella

This post originally appeared on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / subscribe to receive regular updates (about 1-3 / week)

 Following on from my (rather controversial) post the other day about #6G and #IMT2030 needing to be indoor-primary and also have an IEEE / #WiFi candidate, I'm now going to *further* annoy various people.

There's a lot of talk about 6G being a "network of networks". This follows on from previous similar themes about #convergence and #HetNets. At one level I agree, but I think there needs to be a perspective shift.

There has been a long string of attempts to blend Wi-Fi and cellular, going all the way back to UMA in the 2G/3G era around 2005. (I was a vociferous critic).

There's been a alphabet-zoo of acronyms covering 3GPP gateway functions or selection/offload approaches - GAN, ANDSF, TWAG, N3IWF, ATSSS - and probably others I've forgotten. From the Wi-Fi side there's been Hotspot 2.0 and others. More recently we've seen an attempt to bridge fixed and mobile networks, even going as far as pitching 3GPP-type cores for fixed ISPs.

Pretty much all of these have failed to gain traction. They've had limited deployments and successes here and there, but nobody can claim that true "converged wireless" is ubiquitous or even common. 99% of WiFi has no connection to cellular. Genuine "offload" is tiny.

But despite this, the 6G R&D and vision seems to be looking to do it all over again. This phrase "network of networks" cropped up regularly at the 6GWorld #6Gsymposium events I attended this week. It now usually includes integrating #satellite or non-terrestrial (NTN) capabilities as much as Wi-Fi.

But there's a bit of an unstated assumption I think needs to be challenged. There seems to be unquestioned acceptance that the convergence layer - or perhaps "umbrella" sheltering all the various technologies is necessarily the 3GPP core network.

I think this is a problem. Many of the new and emerging 6G stakeholders (for instance enterprises, satellite operators, or fixed providers) do not understand 3GPP cores, nor have the almost religious devotion to that model common in the legacy cellular sector.

So I think any "convergence" in IMT2030 must be defined as bi-directional. Yes, Wi-Fi and satellite can slot into a 3GPP umbrella. But satellite operators need to be able to add terrestrial 6G as an add-on to their systems, while Wi-Fi controllers (on-prem or cloud based) should be able to look after "naked" (core-free) 3GPP radios where appropriate.

This would also flow through to authentication methods, spectrum coordination and so on. Also it should get reflected in government policy & regulation.

My view is that 3GPP-led convergence has largely failed. Maybe it gets fixed in 5G/6G eras, but maybe it won't. We need #5G and 6G systems to have both northbound and southbound integration options.

I also think we need to recognise that "convergence" is itself only one example of "combination" of networks. There are numerous other models, such as bonding or hybrids that connect 2+ separate networks in software or hardware.

 

Friday, April 28, 2023

6G must be indoor-primary and have a Wi-Fi candidate technology

This post originally appeared on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / subscribe to receive regular updates (about 1-3 / week)

I'm giving a lot of thought to #6G design goals, priorities & technology / policy choices. Important decisions are coming up. I'll be exploring them in coming weeks and months. Two important ones I see:

- 6G / #IMT2030 must be "indoor-primary"
- There must be a IEEE / Wi-Fi Alliance candidate tech for 6G

The first one is self-evident. The vast bulk of mobile use - and an even-larger % of total wireless use - is indoors. It's inside homes, offices schools, factories, warehouses, public spaces like malls and stadia - as well as inside vehicles like trains. Even outdoors, a large % of usage is on private sites like industrial complexes or hospital campuses.

Roughly 80% of mobile use is indoors - more if you include wireless streaming to smart TVs and laptops/tablets. By the 2030s 6G era, there will be more indoor wireless use for #industrialautomation, #gaming, education, healthcare, #robotics and #AR / #VR / #metaverse and so on.

This implies that economic, social, welfare and cultural upsides will be indoor-primary. 80%+ of any GDP uplift will be indoor-generated. This suggests 6G tech design & standards - and associated business models and regulation - should be indoor-oriented too.

The IEEE / #WiFi idea follows on from this. The default indoor wireless tech today is Wi-Fi. There is a lot of indoor cellular use, but currently 5G is supported poorly - and certainly not everywhere.

While 5G and future 6G indoor #smallcells, #neutralhost and repeaters / DAS are evolving fast, *nobody* expects true ubiquity. Indoor cellular will remain patchy, especially multi-operator. And many devices (eg TVs) don't have cellular radios anyway.

This means that WiFi - likely future #WiFi8 and #WiFi9 - will remain central to in-building connectivity in the 6G era, no matter how good the tech for reconfigurable surfaces or other cellular innovations become.

IEEE decided not to pitch WiFi6 formally for 5G / IMT2020, but instead just show it surpassed all the metrics. But "we could have done it if we wanted" isn't good enough. There are no government-funded "WiFi Testbed Programs" or "WiFi Innovation Centres of Excellence" because of this lower visibility.

Governments are ITU members and listen to it. If policymakers want the benefits of full connectivity, they need to support it with spectrum, targets and funding, across *all* indoor options.

And if the WiFi industry wants full / easy access to new resources, it needs to be an official 6G / IMT2030 technology. It needs access to IMT licensed spectrum, especially for local licenses with AFC.

This idea will be very unpopular among both cellular industry (3GPP pretends it is the "keeper of the G's") and the WiFi sector, which sees it as a lot of extra work & politics.

But I think it's essential for IMT2030 to embrace network diversity, plus ownership- & business-model diversity as central elements of 6G.

 

Sunday, November 07, 2021

No, the Metaverse is not the killer app for 5G

(This article was initially published on my LinkedIn Newsletter - click here to see the original, plus comment thread. And please subscribe!)

Let's stop the next cliche before it even starts.

Most knowledgeable people now roll their eyes in derision whenever they hear the words 5G and autonomous driving (or robotic surgery) mentioned in the same sentence. But the mobile industry's hypesters are always casting around for some new trope - and especially the mythical "killer app" that could help to justify the costs and complexity.

And as if on cue, the Metaverse - essentially a buzzword meaning a hybrid of AR/VR with the social web, collaboration and gaming - has captured the headlines.

No alt text provided for this image

The growing noise around Metaverse technologies - and especially Facebook's recent rebrand to Meta - is attracting a whole slew of bandwagon-jumpers. The cryptocurrency community has been the first to trumpet its assumed future role - perhaps unsurprisingly, since they tend to be even more fervent and boosterish than the mobile sector. But we're also seeing the online shopping, advertising and gaming worlds hail the 'Verse as the next big thing.

Next up - I can pretty much guarantee it - will be the 5G industry talking about millisecond latency and buying a "Metaverse network slice". We'll probably get the edge-computing crowd popping up shortly afterwards too. I've already seen a few posts hailing the Metaverse as the possible next big thing for MNOs (mobile network operators).

They're wrong.

The elephant in the room

If you've found this article without knowing my normal coverage themes, you might be surprised to read that the single biggest issue for connecting Metaverse devices and users will be real, physical walls.

If you go through Mark Zuckerberg's lengthy video intro to Meta and his view of future technologies, you'll notice that a high % of scenarios and use-cases are indoors. Gaming from your sofa. Virtual living rooms. Hybrid work environments blending WFH with in-person meetings, and so on.

This shouldn't be a huge surprise. The more immersive a technology is - and especially if it's VR rather than AR based - the more likely people will take part while seated, or at least not while walking around an outdoor environment with obstacles and dangers. Most gaming, and most business collaboration takes places indoors too.

And indoor environments tend to have particular ways that connectivity is delivered to devices. Generally, Wi-Fi tends to be used a lot, as the access points are themselves indoors, at the end of broadband connection or office local area network.

Basically, wireless signals at frequencies above 2-3GHz don't get inside buildings very well from outside, and the higher the performance, the worse that propagation tends to be. Put simply, 5G-connected headsets and other devices will generally not work reliably indoors, especially if they have to deliver consistent high data speeds and low latencies which need higher frequencies. We can also expect the massive push for Net Zero in coming years to mean ever-better insulated buildings, which will make matters even worse for wireless signals as a side-effect.

For sure, certain locations will have well-engineered indoor 5G systems that will work effectively - but software developers generally won't be able to assume this. Airports, big sports venues, shopping malls and some industrial sites like factories will be at the top of the list for these types of solutions. For those locations, 5G Metaverse connections may well be widely used and effective. However, those are the exceptions - and it will take many years to deploy new in-building systems, or upgrade existing infrastructure anyway.

In particular, most homes and offices will have patchy or sometimes no 5G coverage, especially in internal rooms, elevators or basements. (There might be a 5G signal or logo displayed on the device, but that doesn't mean that the famously-promised gigabit speeds or millisecond latencies will actually be deliverable).

In those locations, expect Metaverse devices to use Wi-Fi as a baseline - and increasingly the Wi-Fi 6/6E/7 generations with better capabilities than previous versions.

What the Meta video tells us

I'm aware that the Metaverse is more than just Facebook / Meta, but the 1h17 video from Zuck (link) is not a bad overview of what to expect in terms of experiences, devices and business models. Obviously there will be different views from Epic Games, Microsoft's various initiatives around Hololens and Mesh, plus whatever Apple is quietly cooking up, but this is a decent place to start.

The first thing to note is the various Horizon visions that Meta is pitching - Home, Worlds and Workrooms. These are (broadly) for close social interaction, gaming/larger-scale social and business collaboration - especially hybrid work.

Mostly, the demos and visions are expected to take place from the participant's home, office, school or similar venue. There's a couple of outdoor examples of enhanced sports, or outdoor art/advertising as well. Virtual desktops, avatars that mimic eye and facial movements and so on.

In terms of devices, there's a large emphasis on headsets (obviously the Oculus Quest, and also the new high-end Cambria device promised for 2022) as well as discussions of AR glasses, from the RayBan Stories recently launched, to a forthcoming project called Nazare.

The technology discussion is all around the functional elements, not the connectivity. Optics, sensors, batteries, displays, speakers, cameras and so on. There are developer tools for hand and voice interaction, and presence / placement of objects in the virtual realm. There's lots of discussion around creators, advertising and the ability to own (and interoperate) virtual avatars, costumes and furniture. There are also nods to privacy, as would be expected.

There's no mention of connectivity, apart from noting that Cambria will have radios of some sort. The section on the "Dozen major technological breakthroughs for next-gen metaverse" doesn't mention wireless, 5G or anything else.

No alt text provided for this image

It's worth noting that Oculus devices and the RayBan glasses today use Wi-Fi. We can also expect the gesture-control in future will likely lean on UWB sensors. Outside of Facebook / Meta essentially all of today's dedicated AR/VR headsets connect with Wi-Fi or a cable, to a local network or broadband line. (That might be 5G fixed-wireless to the building for a few % of homes, but that will still use Wi-Fi on the inside).

Where cellular 4G/5G takes a role in XR is where the device is tethered to a phone or modem, or is experienced actually on the smartphone itself - think Pokemon Go, or the IKEA app that lets you design a room with virtual furniture.

We can expect the same with the Metaverse. If you're using a smartphone to access it, then obviously 5G will play a role, just as it will for all mobile apps in 3-4 years time when penetration has increased.

Will Cambria and future iterations feature 5G built-in? Maybe but I doubt it, not least because of the extra cost and engineering involved, as well as multiple versions to support different regional frequency options. Would a future Apple AR/Metaverse headset feature cellular, like some versions of the Watch? Again, that's possible but I wouldn't bet on it.

In the second half of the decade, later versions of 5G (Release 17 & 18) will have useful new features like centimetre-accuracy positioning that could be useful for Metaverse purposes - but again, that's reliant on having decent coverage in the first place. There will likely be some useful aspects outdoors though - for instance accurate measurement of vehicles on roadways.

Facebook Connectivity becomes Meta too

One other thing I noticed is a reference on LinkedIn to Facebook's often-overlooked Connectivity division, which does all sorts of interesting programmes and initiatives like TIP (which does OpenRAN and other projects), Terragraph 60GHz mesh, Express Wi-Fi and the low-end Basics "FB-lite" platform for developing markets with limited network infrastructure.


No alt text provided for this image

Apparently it's now being renamed Meta Connectivity - partly I guess because of the reorganisation and rebranding of the group overall, but also as a longterm part of the Metaverse landscape.

To me, that also indicates that the Metaverse is going to use multiple wireless (and wired) technologies - which aligns with Zuckerberg's view that it's more of a reinvention of the Internet/Web overall, rather than a particular app or experience.

Bandwidth-heavy? Or perhaps not....

One other thing needs to be considered around the Metaverse and connectivity. The immediate assumption is that such a "rich" environment, either full-virtual or overlaid onto a view of the real world, will need lots of data - and therefore the types of bandwidths promised by 5G. If we all use Metaverse devices to project "virtual TV screens" onto virtual surfaces, it will use lots of capacity, supposedly.

But it strikes me that avatars (even photo-realistic ones) & 3D reconstructions of real-world scenes will likely need less bandwidth than actual video. Realtime rendering will likely be done on-device in most cases, just sending the motion/sensor data or metadata about objects over the network.

Clearly this will depend on the exact context and application, but if your PC or phone or headset has a model of your friend's virtual house, or your virtual conference room - and all the objects and people/avatars in it - then it doesn't actually need realtime 4K video feeds to show different views.

In addition, the integration of eye-tracking allows pre-emptive downloads or actions, so "pseudo-latency" can seem very low, irrespective of the network's actual performance. If the headset sees you looking at a football, it can start working on the trajectory of a kick 10's or even 100's of milliseconds before you move your virtual leg.

That said, the sensor data uplink & motion control downlink will need low latency, but I suspect that will be more about driving localised breakout and peering rather than genuine localised compute. If you're in a hybrid conference with distant colleagues, the main role for edge-computing is to offload your data to the nearest Internet exchange with as few hops as possible.

(Some of the outdoor scenes in the Meta video from Connect seem rather unrealistic. They show groups of people playing table tennis and a virtual basketball match with "friends on the other side of the world", which would involve some interesting issues with the speed of light and how that would impact latency.)

Conclusion

In a nutshell - no, the Metaverse isn't the killer app for 5G.

The timelines align between the two, so where 'Verse apps are used on smartphones they'll increasingly use 5G if it's available and the user is out-and-about. But that's correlation, not causation. Those smartphones will typically be connected via Wi-Fi when at home, school or work. I suspect the main impact on smartphones will be on the need for better 3D graphics capability and enhanced sensors and cameras, rather than the network side.

Will we see some headsets or glasses with built-in cellular radios, some with 5G support? Sure, there will certainly be a few emerging in coming years, especially for enterprise / private network use. I'd expect field-workers, military, or industrial employees to exploit various forms of AR and VR in demanding situations well-suited to cellular, although many will tether a headset or glasses to a separate modem / module to reduce weight.

Many devices will also include various other wireless technologies too - Wi-Fi, Bluetooth, maybe Thread/Matter, UWB and so on.

But if anything, I suspect that the Metaverse may turn out to be the killer app for WiFi7, especially for home and office usage. That doesn't mean that 5G won't benefit as well - but I don't see it as a central enabler, given the probable heavy indoor bias of the main applications. (I don't think that cryptocurrency or edge-computing are key enablers either, but those are debates for another day)

(This article was initially published on my LinkedIn Newsletter - click here to see the original, plus comment thread. And please subscribe!)

#Metaverse #Facebook #Meta #AugmentedReality #VirtualReality #5G #WiFi #MixedReality #Mobile #Wireless #Devices #Gaming #Collaboration #HybridWorking

Wednesday, July 29, 2020

The fake battle: 5G vs Wi-Fi

[Reposted from my LinkedIn & slightly extended. See the post here for a full comment thread]

I'm bored of the fake battle being hyped up between #WiFi and #5G, especially for enterprise connectivity in-building.

Let's be absolutely clear. Essentially *every* building, whether residential, enterprise office, public venue or industrial, will need good WiFi coverage, increasingly based on #WiFi6.

Most laptops, TVs, screens, voice assistants, tablets, consumer appliances & other non-smartphone devices will be WiFi-only. Only a handful will have cellular radios too - the economics & manufacturing/distribution complexities don't work for including 5G as a default in most electronic products.

Almost every building will *also* need decent indoor public 4G/5G broadband coverage, especially for employees' and visitors' phones. In most cases this will need to cover all major MNOs' networks, as well as public safety systems such as critical-communications LTE. (
Wi-Fi Calling doesn't work ubiquitously on all phones / mobile networks on enterprise Wi-Fi, so there will always need to be a cellular network for reliable basic telephony).

*Some* buildings will also need indoor private 5G for ultra low-latency machines or other connected devices. For industrial sites this will mostly be isolated local networks. For others it may be delivered by MNOs via local coverage or network-slicing, or by some form of neutral-host wholesale model.

The main competition for indoor 5G is actually indoor 4G, not WiFi for which there is only a narrow overlap in use cases. WiFi will almost always be needed as well as cellular, with very rare examples where it's absent - for instance outdoors on campus sites.

Also, future visitor access to WiFi may be made much easier with #OpenRoaming, which can use multiple affiliation-based credentials, not just SIM or passwords. That will change the usability barriers for Wi-Fi, for instance if you can connect via a loyalty app, rather than needing to visit a web-page and enter credentials.

Bottom line: it's not a battle. Wi-Fi6 and 5G will be needed for different purposes. They probably won't be integrated much either, as they'll have different financial models, different usage models (and locations) and deployment/upgrade timelines. Think divergence, not convergence - although some elements such as planning tools and fibre backhaul to the cells/APs will likely be combined.

If you’d like more details on this topic & my deeper analysis on the future of wireless, please contact me via information AT disruptive-analysis DOT com. I offer advisory services to governments, operators, vendors, enterprises & investors.



See also LinkedIn post with long comment thread via this link: here

Saturday, April 18, 2020

Rethinking wireless networks for post-COVID19 Smart Buildings

For the past month or so, I've been thinking about the longer-term technology, policy and business trends that might emerge in the wake of the current pandemic. I'm especially interested in those that could directly or indirectly affect the use and deployment of networks and communications.

I wrote up my initial scenarios for what might lie ahead for the telecoms industry in the recent STL Partners report on COVID-19: Now, Next & After (link), and also discussed them on the STL webinar on the same topic (link). The next update webinar is on May 6th - link. 

I've also participated in other client webinars and podcasts on campus networks (link), private 4G/5G (link) and Wi-Fi6E (link) recently - and I always include a section considering the pandemic's impact. (Any market analysis or opinion formed more than 2 months ago now needs to be reconsidered in the light of the pandemic and coming economic recession).

With that in mind, one area I've started thinking about is that of in-building wireless and smart buildings, especially relating to business locations. (Residential coverage of cellular and better home broadband / Wi-Fi is also top-of-mind, but I'll tackle that separately another time).

Obviously, offices and shopping malls are currently empty in much of the world, but eventually they will return to regular use, to some level at least. Even buildings sadly vacated by companies that cannot survive the economic impact will likely gain new tenants and uses.  


Making buildings pandemic-proof 

We already have building codes and regulations to protect us against fire risks, and even earthquakes. For fires, we have sensors, alarms, fire escapes, drills, signage and so on. In parts of the world there are specific rules governing indoor coverage for public safety radios, and they are being updated as agencies upgrade from P25 / TETRA systems to 4G / 5G critical-communications cellular alternatives.

So what else would it take to make a building "pandemic-proof"? I'm especially interested how we manage social distancing - both during the next phase of recovery and a gradual return to near-normal when a vaccine becomes available, but also during possible future waves of COVID or new entirely outbreaks. 

In the wake of the 2008 financial crisis there was a big focus on banks' transparency, financial stability and regulatory "stress tests". I'd be very surprised if equivalent changes don't take place over the next few years - especially as many coronavirus infections are understood to occur indoors.

I've found various articles about smart buildings and the pandemic already, where the main focus seems to be on general hygiene and infection control. Using thermal cameras (and perhaps facial recognition) can automate detection of people with fevers. LED lights can provide disinfection in some cases, and bathroom sensors can help enforce hand-washing. Remote access to building-management systems allow facilities personnel to work from home. Better management of temperature and humidity may reduce the survival time of viruses and bacteria.

I can imagine a range of strategies being adopted in coming years:
  • Temperature-detection and hygiene management, as above.
  • Ability for remote building-management wherever possible
  • Design guidelines for wider corridors and stairways, better ventilation, virus-unfriendly surfaces, automated doors rather than handles, and so on
  • Ways to impose, measure and enforce social-distancing rules in emergencies - for example by dynamically lowering maximum numbers of permitted people in enclosed spaces, or digital signs for making corridors or aisles into one-way systems.
  • Use of sensors to measure occupancy, density and flow of people, and control entry/exit better
  • Automated disinfection systems or processes (maybe using robots)
  • Use of occupants' / visitors' phones or other devices to help them navigate / work more safely
  • Ability for authorities to use cameras, admission-control and other data for contact-tracing purposes (subject to emergency laws on privacy etc).
Clearly, not all of these can apply to all buildings - and there is obviously a huge spectrum of venue types with different requirements. A supermarket is different to an office block, a corner-shop, a factory or warehouse full of robots. Older buildings are not likely to be able to widen corridors, while a "cube farm" has more flexibility. 

But what that means is that in a future outbreak, a government could say: "Workplaces certified to standard PNDMC-A can remain open, if they reduce occupancy to X, Y & Z metrics. PNDMC-B locations must comply with emergency rules A, B & C. All others must close."

Clearly, those type of rules will incentivise building owners and developers to upgrade their sites wherever possible. While it is too early to guess exactly how the specific regulations might be formulated, there are nonetheless some initial ideas and steps to think through.


The role of networks

Given my own focus on mobile and wireless systems, a key theme immediately leaps to my mind: many of these techniques and practices will require better and wider indoor connectivity than is common today in many places. 

While some building-management systems will be based on wired connections (not least as they'll need cables for power anyway), I expect wireless networks to be extremely important for much of this.

I see wireless networks being employed both indirectly (for connection of sensors, cameras or other devices, such as smartphones used for distancing apps) and directly by using the network itself as a sensing and measurement tool. Indoor mapping and positioning will be needed in tandem with wireless for various use-cases.

There are particular challenges and opportunities for indoor wireless systems here:
  • There will be a need to support both public networks (for indoor use of nationwide MNO networks and services) and localised private wireless, for the building or company's own needs.
  • Almost inevitably, both 3GPP cellular (4G/5G) and Wi-Fi (5/6/7) will be essential for different use-cases and device types, plus public-safety wireless such as TETRA. In many some cases additional technologies such as Bluetooth low-energy, ZigBee or proprietary systems will also be required as well. 
  • All of this will occur while major transitions to 5G (at different frequencies) and private cellular networks are ongoing in coming years.
  • Any real-time mobile app, whether it is giving alerts, or uploading updates on location, will be dependent on good wireless connectivity, either via Wi-Fi or in-building cellular connections
  • Proximity-based apps (for instance using Bluetooth) will risk false-positives if they are not integrated with building location and indoor-mapping systems. You can safely stay 2 metres from someone infected, if there is a wall or floor/ceiling between you.
  • IoT systems such as disinfectant robots will also need access to indoor maps and granular positioning technology.
  • Next-generation networks such as private/campus 5G and also recent Wi-Fi meshes have improved wireless-positioning abilities. This could allow both real-time and reported proximity-monitoring - as well as enabling remote working & even "lights out" full automation in industrial settings
  • Both Wi-Fi and cellular networks can work out how many devices/users are not just connected, but detected, even if they do not attempt - or are not permitted - to connect to a given system. That could yield good data on user-density, especially if they are personal devices such as smartphones.
  • Wi-Fi enhancements already enable motion-detection - which can be considerably more accurate than traditional infra-red, and also work through walls. One technology innovator here is Cognitive Systems (link) but there are others as well. I've also seen suggestions that future 5G variants may be able to do something similar, if deployed with small cells. (I'm not sure how it would work with other in-building shared networks, though).
  • Potential to use localised cell-broadcast messaging, or Wi-Fi hotspot captive-portal pages, to distribute public health information and advice
  • There may be a growing need to align the indoor wireless network(s) with nearby outdoors connectivity, or link multiple buildings together well. Campus networks are already growing in importance for multiple reasons (link) and social-distancing and control adds another set of use-cases. (Consider private/public spaces such as courtyards, rooftop bars, parking lots and so on).
  • The use of virtualised radio networks (or specific variants such as OpenRAN) could also prove valuable here - for instance to enable operators to scale up/down capacity dedicated to indoor 5G wireless systems, or switch radio VNFs between indoor and outdoor coverage. (This goes far beyond pandemic-proofing and I will write about it another time). 
  • Neutral-host indoor wireless systems will be able to onboard new tenant networks such as public safety, or private building management networks, depending on future requirements and spectrum licensing policy.
  • There may be edge-computing requirements driven by pandemic-proofting, although that doesn't necessarily imply either on-prem or very granular nearby edge facilities, rather than metro-level.
This is still just a very rough draft of my ideas - and clearly there are various policy / regulatory hypotheses here as well as technology direction. I'm not a specialist on building regulations, so it's quite possible I've made unreasonable assumptions. But this is intended as the start of a discussion, rather than a definitive forecast. I expect this topic and more detailed discussion to surface in coming months and years.

Your comments are very welcome - and if you want to get in touch with me directly, please connect on my LinkedIn, or send me a Twitter DM. If you're hosting any webinars, or holding internal brainstorms on this, I'd be very interested in participating.


Monday, February 24, 2020

3rd Neutral Host Workshop + OpenRAN for shared networks. Early bird still available


NOTE: Owing to uncertainty around the impact of Coronavirus on travel, event attendance, company policies & venues, this workshop has been postponed from 31st March until 7th July. We have contacted existing registered attendees to discuss the options

On March 31st  July 7th I'll be running my 3rd public workshop on Neutral Host Networks in central London, together with colleague Peter Curnow-Ford.

As well as covering the basics of new wholesale/sharing models for MNOs, both with and without dedicated spectrum, we will also be looking more closely at the fit between NHNs and new virtualised vRAN / OpenRAN technologies. 

We'll cover all the various use-cases: metro-area network densification, indoor systems for various venues, road/rail coverage, rural wholesale models, FWA and more. 

The links (and differences) between neutral-host and private LTE/5G will be discussed, as well as alternative models such as multi-MNO sharing or national roaming. (see this post for some previous thoughts on this)

Different countries' competitive, regulatory and spectrum positions will be covered, to assess how that will impact the evolution of NHNs. 
 
Early bird pricing is available before June 7th.

Full details and registration are available here

Thursday, October 24, 2019

5G will catalyse the transformation of the telecom industry itself

This is a post that originally appeared on my LinkedIn page (see here). There are numerous additional insights in the comments.

Much of the current hype about 5G relates to business and verticals. Many claim that 5G will be a central force in "transforming" industries. 

But what people in the telecoms sector don't yet seem to realise is that the very first industry that will be transformed by 5G is.... telecoms itself. 

5G is bringing a new set of challenges and complexities - new spectrum, more need for coverage indoors & in remote areas, and new use-cases and stakeholders. 

If 5G is anywhere near as important as it's claimed, then many businesses and governments will want to own it, customise it and control it directly, not through an MNO.

Meanwhile, localised and shared spectrum, arriving at the same time as 5G (but also usable for 4G) is creating a new landscape of wholesale/neutral host players, private and community operators, cloud/Internet players with mobile assets, industrial/vertical MNOs and hybrid MNO/MVNO providers. 

The old world of mobile involved 3 or 4 national MNOs, plus some TowerCos and a few consumer MVNOs. 

The new, 5G world is much more fragmented and heterogeneous. Even as regulators look at allowing mergers of the legacy MNOs, there's a Cambrian explosion of newer, cooler, more-agile niche players emerging. 




If you're interested in this topic & want to engage more deeply, I'm running a London workshop on Neutral Host Networks on Nov 21st https://disruptivewireless.blogspot.com/p/2nd-neutral-host-networks-london-public.html 

Also, I undertake private advisory work for clients on various angles relating to future telecoms & cellular provider heterogeneity and opportunities - please get in touch to discuss your needs.
 
 telecom neutralhost 4G spectrum privateLTE CBRS private5G