Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Sunday, July 24, 2022

New Report on Enterprise Wi-Fi: No, 5G is not enough

(Initially posted on LinkedIn, here. Probably best to use LI for comments & discussion)

Published this week: my full STL Partners report on Enterprise Wi-Fi. Click here to get the full summary & extract.

Key takeout: Telcos, MNOs & other service providers need to take Wi-Fi6 , 6E & (soon) 7 much more seriously. So do policymakers.

5G is not enough for solving enterprises' connectivity problems on its own. It has important roles, especially in Private 5G guise, but cannot replace Wi-Fi in the majority of situations. They will coexist.

Wi-Fi will remain central to most businesses' on-site connectivity needs, especially indoors, for employees, guests and IoT systems.

Telcos should support Wi-Fi more fully. They need a full toolkit to drive relevance in enterprise, not just a 5G hammer & pretend everything is a nail. CIOs and network purchasers know what they want - and it's not 5G hype or slice-wash.

Newer versions of Wi-Fi solve many of the oft-cited challenges of legacy systems, and are often a better fit with existing IT and networks (and staff skills) than 5G, whether private or public. 

Deterministic latency, greater reliability and higher density of devices make 6/6E/7 more suitable for many demanding industrial and cloud-centric applications, especially in countries where 6GHz spectrum is available. Like 5G it's not a universal solution, but has far greater potential than some mobile industry zealots seem to think.

Some recommendations:

- Study the roadmaps for Wi-Fi versions & enhancements carefully. There's a lot going on over the next couple of years.
- CSP executives should ensure that 5G "purists" do not control efforts on technology strategy, regulatory engagement, standards or marketing.
- Instead, push a vision of "network diversity", not an unrealistic monoculture. (Read my recent skeptical post on slicing, too)
- Don't compare old versions of Wi-Fi with future versions of 5G. It is more reasonable to compare Wi-Fi 6 performance with 5G Release 15, or future Wi-Fi 7 with Rel17 (and note: it will arrive much earlier)
- 5G & Wi-Fi will sometimes be converged... and sometimes kept separate (diverged). Depends on the context, applications & multiple other factors. Don't overemphasise convergence anchored in 3GPP cores.
- Consider new service opportunities from OpenRoaming, motion-sensing and mesh enhancements.
- The Wi-Fi industry itself is getting better at addressing specific vertical sectors, but still needs more focus and communication on individual industries
- There should be far more "Wi-Fi for Vertical X, Y, Z" associations, events and articles.
- Downplay clunky & privacy-invasive Wi-Fi "monetisation" platforms for venues and transport networks.
- Policymakers & regulators should look at "Advanced Connectivity" as a whole, not focus solely on 5G. Issue 6GHz spectrum for unlicenced use, ideally the whole band
- Support Wi-Fi for local licensed spectrum bands (maybe WiFi8). Look at 60GHz opportunities.
- Insist Wi-Fi included as an IMT2030 / 6G candidate.

See link for report extract & Exec Summary

Thursday, July 14, 2022

Network Slicing is a huge error for the 5G industry

(Initially posted on LinkedIn, here. Probably best to use LI for comments & discussion)

I've started calling myself a "Slice Denier" or "Slicing Skeptic" on client calls and conference speeches on #5G.

Increasingly, I believe that #NetworkSlicing is one of the worst strategic errors made by the #mobile industry, since the catastrophic choice of IMS for communications applications. The latter has led to the fiascos of #VoLTE and #RCS, and loss of relevance of telcos in communications more broadly.

At best, slicing is an internal toolset that might allow telco operations or product teams (or their vendors) to manage their network resources. For instance, it could be used to separate part of a cell's capacity for FWA, and dynamically adjust that according to demand. It might be used as an "ingredient" to create a higher class of service for enterprise customers, for instance for trucks on a highway, or as part of an "IoT service" sold by MNOs. Public safety users might have an expensive, artisanal "hand-carved" slice which is almost a separate network. Maybe next-gen MVNOs.

(I'm talking proper 3GPP slicing here - not rebranded QoS QCI classes, private APNs, or something that looks like a VLAN, which will probably get marketed as "slices")

But the idea that slicing is itself a *product*, or that application developers or enterprises will "buy a slice" is delusional.

Firstly, slices will be dependent on [good] coverage and network control. A URLLC slice likely won't work reliably indoors, underground, in remote areas, on a train, on a neutral-host network, or while roaming. This has been a basic failure of every differentiated-QoS monetisation concept for many years, and 5G's often-higher frequencies make it worse, not better.

Secondly, there is no mature machinery for buying, selling, testing, supporting. price, monitoring slices. No, the 5G Network Exposure Function won't do it all. I haven't met a Slice salesperson yet, or a Slice-procurement team.

Thirdly, a "local slice" of a national 5G network will run headlong into a battle with the desire for separate private/dedicated local 5G networks, which may well be cheaper and easier. It also won't work well with the enterprise's IT/OT/IP domains, out of the box.

Also there's many challenges getting multi-operator slices, device OS links to slice APIs, slice "boundary controllers" between operators, aligning RAN and core slices, regulatory questionmarks and much more.

To use an appropriate analogy, consider an actual toaster, with settings for different timing, or a setting for bagels. Now imagine Toaster 5.0 with extra software smarts, perhaps cloud-native. Nobody wants to buy a single slice of toast, or a software profile. They'll just buy a toaster for their kitchen, or or get an "integrated breakfast solution" including toast in a cafe. They won't care about the slicing software. The chef might, but it's doubtful.

If you see 5G Network Slicing as a centrepiece of future "monetisation", you're in for an unpleasant smell of burning, and probably a blaring smoke alarm too.


Tuesday, April 26, 2022

Telcos should focus on "connected data"​ not just "edge computing"​

Note: A version of this article first appeared as a guest blog post written for Cloudera, linked to a webinar presentation on May 4, 2022. See the sign-up link in the comments. This version has minor changes to fit the tone & audience of this newsletter, and tie in with previous themes. This version is also published on my LinkedIn newsletter with a comments thread (here).

Telcos and other CSPs are rethinking their approach to enterprise services in the era of advanced wireless connectivity - including their 5G, fibre and Software-Defined Wide Area Network (SD-WAN) portfolios. 

Many consumer-centric operators are developing propositions for “verticals”, often combining on-site or campus mobile networks with edge computing, plus deeper solutions for specific industries or horizontal applications. Part of this involves helping enterprises deal with their data and overall cloud connectivity as well as local networks. (The original MNO vision of delivering enterprise networks as "5G network slices" partitioned from their national infrastructure has taken a back seat. There is more interest currently in the creation of dedicated on-premise private 5G networks, via telcos' enterprise or integrator units).

No alt text provided for this image

At the same time, telecom operators are also becoming more data- and cloud-centric themselves. They are using disaggregated systems such as Open RAN and cloud-native 5G cores, plus distributed compute and data, for their own requirements. This is aimed at running their networks more efficiently, and dealing with customers and operations more flexibly. There are both public and private cloud approaches to this, with hyperscalers like Amazon and disruptors such as Rakuten Symphony and Totogi promising revolutions in future.

As I've said for some time, “The first industry that 5G will transform is the telecom industry itself.

This poses both opportunities and challenges. Telcos’ internal data and cloud needs may not mirror their corporate customers’ strategies and timing perfectly, especially given the diverse connectivity landscape.

If operators truly want to blend their own transformation journey with that of their customers, what is needed is a much broader view of the “networked cloud” and "distributed data", not just the “telco cloud” or "telco edge" that many like to discuss.

Networked data and cloud are not just “edge computing”

Telecom operators’ discussions around edge/cloud have gone in two separate directions in recent years:

  • External edge computing: The desire by MNOs to deploy in-network edge nodes for end-user applications such as V2X, IoT control, smart city functions, low-latency cloud gaming, or enterprise private networks. Often called “MEC” (mobile edge computing), this spans both in-house edge solutions and a variety of collaborations with hyperscalers such as Azure, Google Cloud Platform, and Amazon Web Services.
  • Internal: The use of cloud platforms for telcos’ own infrastructure and systems, especially for cloud-native cores, flexible billing, and operational support systems (BSS/OSS), plus new open and virtualised RAN technology for disaggregated 4G/5G deployments. Some functions need to be deployed at the edge of the network (such as 5G DUs and UPF cores), while others can be more centralised.

Of these two trends, the latter has seen more real-world utilisation. It is linked to solving clear and immediate problems for the CSPs themselves.

Many operators are working with public and private clouds for their operational needs—running networks, managing subscriber data and experience, and enabling more automation and control. While there are raging debates about “openness” vs. outsourcing to hyperscalers, the underlying story—cloudification of telcos’ networks and IT estates—is consistent and accelerating. The timing constraints of radio signal processing in Open RAN, and the desire to manage ultra-low latency 5G “slices” in future 3GPP releases are examples that need edge compute. There may also be roles for edge billing/charging, and various security functions.

In contrast, telcos' customer-facing cloud, edge and data offers have been much slower to emerge. The focus and hype about MEC has meant operators’ emphasis has been on deploying “mini data centres” deep in their networks—at cell towers or aggregation sites, or fixed-operators’ existing central office locations. Discussion has centred on “low latency” applications as the key differentiator for CSP-enabled 5G edge. The focus has also been centred on compute rather than data storage and analysis. Few telcos have given much consideration to "data at rest" rather than "data in motion" - but both are important for developers.

This has meant a disconnect between the original MEC concept and the real needs of enterprises and developers. In reality, enterprises need their data and compute to occur in multiple locations, and to be used across multiple time frames—from real time closed-loop actions, to analysis of long-term archived data. It may also span multiple clouds—as well as on-premise and on-device capabilities beyond the network itself.

What is needed is a more holistic sense of “networked cloud” to tie these diverse data storage and processing needs together, along with documentation of connectivity and the physical source and path of data transmission.

No alt text provided for this image

Potentially there are some real sources of telco differentiation here - as opposed to some of the more fanciful MEC visions, which are more realistically MNOs just acting as channel partners for AWS Outposts and Azure's equivalent Private MEC.

An example of the “networked cloud”

Consider an example: video cameras for a smart city. There are numerous applications, ranging from public transit and congestion control, to security and law enforcement, identification of free parking spots, road toll enforcement, or analysing footfall trends for retailers and urban planners. In some places, cameras have been used to monitor social-distancing or mask-wearing during the pandemic. The applications vary widely in terms of immediacy, privacy issues, use of historical data, or the need for correlation between multiple cameras. 

CSPs have numerous potential roles here, both for underlying connectivity and the higher-value services and applications.

But there may be a large gap between when “compute” occurs, compared to when data is collected and how it is stored. Short-term image data storage and real-time analysis might be performed on the cameras themselves, an in-network MEC node, or at a large data centre, perhaps with external AI resources or combined with other data sets. Longer-term data for trend analysis or historic access to event footage could be archived either in a city-specific facility or in hyperscale sites.

(I wrote a long article about Edge AI and analytics last year - see here)

No alt text provided for this image

For some applications, there will need to be strong proofs of security and data custody, especially if there are evidentiary requirements for law enforcement. That may extend to knowing (and controlling) the specific paths across which data transits, how it is stored, and the privacy and tamper-resistance compliance mechanisms employed.

Similar situations—with both opportunities and challenges—exist in verticals from vehicle-to-everything to healthcare to education to financial services and manufacturing. CSPs could become involved in the “networked cloud” and data-management across these areas—but they need to look beyond narrow views of edge-compute. Telcos are far from being the only contenders to run these types of services, but some operators are taking it seriously - Singtel offers video analytics for retail stores, for instance.

Location-specific data

As a result, the next couple of years may see something of a shift in telcos’ discussions and ambitions around enterprise data. There will be huge opportunities emerging around enterprise data’s chain-of-custody and audit trails—not only defining where processing takes place, but also where and how data is stored, when it is transmitted, and the paths it takes across the network(s) and cloud(s).

(A theme for another newsletter article or LI post is on enterprises' growing compliance headaches for data transit - especially for international networks. There may be cybersecurity risks or sanctions restrictions on transit through some countries or intermediary networks, for instance. Some corporations are even getting direct access into Internet exchanges and peering-points for greater control).

In some cases, CSPs will take a lead role here, especially where they own and control the endpoints and applications involved. Then they can better coordinate the compute and data-storage resources. In other cases, they will play supporting roles to others that have true end-to-end visibility. There will need to be bi-directional APIs—essentially, telcos become both importers and exporters of data and connectivity. This is especially true in the mobile and 5G domain, where there will inevitably be connectivity “borders” that data will need to transit. (A recent post on the need for telcos to take on both lead and support roles is here)

There may be particular advantages for location-specific data collected or managed by operators. For example, weather sensors co-located with mobile towers could provide useful situational awareness both for the telco’s own operational purposes as well as to enterprise or public-sector customers, such as smart city authorities or agricultural groups. 

Telcos also have a variety of end-device fleets that they directly own, or could offer as a managed service—for instance their own vehicles, or city-wide security cameras. These can leverage the operator’s own connectivity (typically 5G) as well as anchor some of the data origination and consumption.


Telecom operators should shift their enterprise focus from mobile edge computing (MEC) to a wider approach built around "networked data". Much of the enterprise edge will reside beyond the network and telco control, in devices or on-premise gateways and servers. Essentially no enterprise IT/IoT systems will be wholly run "in" the 5G or fixed telco network, as virtual functions in a 3GPP or ORAN stack.

They instead should look for involvement in end-point devices, where data is generated, where and when it is stored and processed—and also the paths through the network it takes. This would align their propositions with connectivity (between objects or applications) as well as property (the physical location of edge data centres or network assets).

There are multiple stages to get to this new proposition of “networked cloud”, and not all operators will be willing or able to fulfil the whole vision. They will likely need to partner with the cloud players, as well as think carefully about treatment of network and regulatory boundaries.

Nevertheless, the broadening of scope from “edge compute” to “networked cloud” seems inevitable. The role of telcos as pure-play "edge" specialists makes little sense and may even be a distraction from the real opportunities emerging at higher levels of abstraction.

The original version of this article is at https://blog.cloudera.com/telco-5g-returns-will-come-from-enterprise-data-solutions/

I'll be speaking on an upcoming webinar with @cloudera about "Enterprise data in the #5G era" on May 4, 2022 - https://register.gotowebinar.com/register/3531625172953644816

#cloud #edgecomputing #5G #telecoms #latency #IoT #smartcities #mobile #telcos

Thursday, April 07, 2022

Geopolitics, war & network diversity

This post was originally published on my LinkedIn Newsletter (here). Please sign up, and join the discussion thread there.


I'm increasingly finding myself drawn into discussions of #geopolitics and how it relates to #telecoms. This goes well beyond normal regulatory and policymaking involvement, as it means that rules - and opportunities and risks - are driven by much larger "big picture" strategic global trends, including the war in Ukraine.

As well as predicting strategic shifts, there are also lessons to be learned from events at a local, tactical level which have wider ramifications. Often, there will be trade-offs against normal telecoms preoccupations with revenue growth, theoretical "efficiency" of spectrum or network use, standardisation, competition and consumer welfare.

This is the first of what will probably be a regular set of articles on this broader theme. Here, I'm focusing on the Ukraine war, in the context some of the other geopolitical factors that I think are important. I'm specifically thinking about what they may mean for the types of network technology that are used, deployed and developed in future. This has implications for #5G, #6G, #satellite networks, #WiFi, #FTTX and much more, including the cloud/edge domains that support much of it. 


Ukraine and other geopolitical issues

This article especially drills into how the conflict in Ukraine has manifested in terms of telecoms and connectivity, and attempts to extrapolate to some early recommendations for policymakers more broadly.

I'm acutely consicous of the ongoing devastation and hideous war crimes being perpetrated there - I hope this isn't too early to try to analyse the narrow field of networking dispassionately, while conflict still rages.

For context, as well as Ukraine, other geopolitical issues impacting telecoms include:

  • US / West vs. China tensions, from trade wars to broader restrictions on the use of Huawei and other vendors' equipment, as well as sanctions on the export of components.
  • Impact of the pandemic on supply chains, plus the greater strategic and political importance of resilient telecom networks and devices in the past two years.
  • The politics of post-pandemic recovery, industrial strategy and stimulus funds. Does this go to broadband deployment, themes such as Open RAN, national networks, smart cities/infrastructure, satellite networks... or somewhere else?
  • Tensions within the US, and between US and Europe over the role and dominance of "Big Tech". Personal data, monopoly behaviour, censorship or regional sovereignty etc. This mostly doesn't touch networks today, but maybe cloud-native will draw attention.
  • Semiconductor supply-chain challenges and the geopolitical fragility of Taiwan's chip-fabrication sector.
  • How telecoms (and cloud) fits within Net Zero strategies, either as a consumer of energy, or as an enabler of green solutions.
  • Cyber threats from nation-state actors, criminal cartels and terrorist-linked groups - especially aimed at critical infrastructure and health/government/finance systems.

In other words, there's a lot going on. It will impact 5G, 6G development, vendor landscapes, cloud - and also other areas such as spectrum policy and Internet governance.

Network diversity as a focus

I've written and spoken before about the importance of "network diversity" and the dangers of technology monocultures, including over-reliance on particular standards (eg 5G) or particular business models (eg national MNOs) as some sort of universal platform. It is now clear that it is more important than ever.

The analogy I made with agriculture, or ecological biodiversity, is proving to be robust.

(Previous work includes this article from 2020 about private enterprise networks, or my 2017 presentation keynote on future disruptions, at Ofcom's spectrum conference. (The blue/yellow image of wheat fields, repeated here in this post, was chosen long before it became so resonant as the Ukrainian flag). I've also covered the shift towards Open RAN and telecoms supplier diversification – including a long report I submitted to the UK Government's Diversification Task Force last year - see this post and download the report).

A key takeout from my Open RAN report was that demand diversity is as important as creating more supply choices in a given product domain. Having many classes of network operator and owner – for instance national MNOs, enterprise private 4G/5G, towercos, industrial MNOs and neutral hosts – tends to pull through multiple options for supply in terms of both vendor diversity and technology diversity. They have different requirements, different investment criteria and different operational models.

In Ukraine, the "demands" for connectivity are arising from an even more broad set of sources, including improvised communications for refugees, drones and military personnel.

The war in Ukraine & telecoms

There have been numerous articles published which highlight the surprising resilience and importance of Ukrainian telecoms during the war so far. Bringing together and synthesising multiple sources, this has highlighted a number of important issues around network connectivity:

  • The original “survivability” concept of IP networks seems to have been demonstrated convincingly. Whether used for ISPs’ Internet access, or internal backhaul and transport for public fixed and mobile networks, the ability for diverse and resilient routing paths seems to have mostly been successful.
  • Public national mobile networks - mostly 4G in Ukraine's case - have proven essential in many ways, whether that has been for reporting information about enemy combatants' locations and activities, obtaining advice from government authorities, or dealing with the evacuation as refugees. (I'm not sure if subway stations used as shelters have underground cellular coverage, or if there is WiFi). Authorities also seem to have had success in getting citizens to self-censor, to avoid disclosing sensitive details to their enemies.
  • Reportedly the Russian forces haven't generally targeted telecoms infrastructure on a widescale basis. This was partly because they have been using commerical mobile networks themselves. However, because roaming was disabled, Russian military use of their encrypted handsets and SIMs on public 3G/4G networks seems to have failed. Two articles here and here give good insight, and also suggests there may be network surveillance backdoors which Russia may have exploited. There have also been reports of stingrays ("fake" base stations used for interception of calls / identity) being deployed. It also appears that some towns and cities - notably the destroyed city of Mariupol - have been mostly knocked offline, partly because the electrical grid was attacked first.
  • Ukraine’s competitive telecoms market has probably helped its resilience. There is a highly fragmented fixed ISP landscape, with very inexpensive connections. There are over a dozen public peering-points across the country. There are three main MNOs, with many users having SIMs from 2+ operators. (This is a good overview article - https://ukraineworld.org/articles/ukraine-explained/key-facts-about-ukraines-telecom-industry). It seems they have enabled some form of national roaming to allow subscribers to attach to each others' networks.
  • WiFi hotspots (likely with mobile backhaul) have been used by NGOs evacuating refugees by buses.
  • Although it is still only being used at a small scale, the LEO satellite terminals from SpaceX’s StarLink seem to be an important contributor to connectivity – not least as a backup option. Realistically, satellite isn’t appropriate for millions of individual homes – and especially not personal vehicles and smartphones – but is an important part of the overall network-diversity landscape. Various commentators have suggested it is useful as a backup for critical infrastructure connectivity, as well as for mobile units such as special forces.
  • Another satellite broadband provider, Viasat, apparently suffered a cyberattack at the start of the war (link here), which knocked various modem users offline (or even "bricked" the devies), reportedly including Ukrainian government organisations. Investigations haven't officially named Russia, but a coincidence seems improbable. This attack also impacted users outside Ukraine.
  • Various peer-to-peer apps using Bluetooth or WiFi allow direct connections between phones, even if wide area connections are down (see link)
  • There have been some concerning reports about the impact of GPS jammers on the operation of cellular networks, which may use it as a source of “timing synchronisation” to operate properly, especially for TDD radio bands. While this has long been a risk for individual cell-sites from low-power transmitters, the use of deliberate electronic warfare tools could potentially point to broader vulnerabilities in future.
  • There has been wide use of commercial drones like the DJI Mavic-3 for surveillance (video and thermal imaging), or modified to deliver improvised weaponry. These use WiFi to connect to controllers on the ground, as well as a proprietary video transmission protocols (called O3+) which apparently has range of up to 15km using unlicensed spectrum. Some of the "Aerorozvidka" units reportedly then use StarLink terminals to connect back to command sites to coordinate artillery attacks (link).

In short, it seems that Ukraine has been well served by having lots of connectivity options - probably including some additional military systems that aren't widely discussed. It has benefited from multiple fixed, cellular and satellite networks, with potential for interconnect, plus inventive "quick fixes" after failures and collaboration between providers. It is exploiting licensed and unlicensed spectrum, with cellular, Wi-Fi and other technologies.

In other words, network diversity is working properly. There appears to be no single point of failure, despite deliberate attacks by invading forces and hackers. Connectivity is far from perfect, but it has held up remarkably well. Perhaps the full range of electronic warfare options hasn't been used - but given the geographical size of Ukraine and the inability of Russia forces to maintain supply-lines to distant units, that is also unsurprising.

Another set of issues that I haven't really examined are around connectivity within sanctions-hit Russia. Maybe it will have to develop more local network equipment manufacturers - if they can get the necessary silicon and other components. It probably will not wish to over-rely on Huawei & ZTE any more than some Western countries have been happy with Nokia and Ericsson as primary options. More problematic may be fixed-Internet routers, servers, WiFi APs and other Western-dominated products. I can't say I'm sympathetic, and I certainly don't want to offer suggestions. Let's see what happens.

Recommendations for policymakers, industry bodies and regulators

So what are the implications of all this? Hopefully, few other countries face a similar invasion by a large and hostile army. But preparedness is wise, especially for countries with unfriendly neighbours and territorial disputes. And even for everywhere else, the risks of cyberattacks, terrorism, natural disasters - or even just software bugs or human error - are still significant.

I should stress that I'm not a cybersecurity or critical infrastructure specialist. But I can read across from other trends I'm seeing in telecoms, and in particular I'm doing a lot of work on "path dependency" where small, innocent-seeming actions end up having long-term strategic impacts and can lock-in technology trajectories.

My initial set of considerations and recommendations:

  • As a general principle, divergence in technology should be considered at least as positively than convergence. It maintains optionality, fosters innovation and reduces single-point-of-failure risks.
  • National networks and telcos (fixed and mobile) are essential - but cannot do everything. They also need to cooperate during emergencies - a spirit of collaboration which seems to have worked well during the pandemic in many countries.
  • Normal ideas about cyber-resilience and security may not extend to the impact of full-scale military electronic warfare units, as well as more "typical" online hacking and malware attacks.
  • Having separate "air-gapped" networks available makes sense not just for critical communications (military, utilities etc) but for more general use. It isn't inefficient - it's insurance. There may be implications here for network-sharing in some instances.
  • Thought needs to be given to emergency fallbacks and improvised work-arounds, for instance in the event of mass power outages or sabotage. This is particularly important for software/cloud-based networks, which may be less "fixable" in the field. Can a 5G network be "bodged"? (that's "MacGyvred" to my US friends)? As a sidenote - how have electric vehicles fared in Ukraine?
  • Unlicensed spectrum and "permissionless communications" is hugely important during emergency situations. Yes, it doesn't have control or lawful intercept. But that's entirely acceptable in extreme circumstances.
  • Linkages between technologies, access networks and control/identity planes should generally be via gateways that can be closed, controlled or removed if necessary. If one is attacked, the rest should be firewalled off from it. For the same reason "seamless" should be a red-flag word for cross-tech / cross-network roaming. Seams are important. They offer control and the ability to partition if necessary. "Frictionless" is OK, as long as friction can be re-imposed if needed.
  • Governments should be extremely cautious of telcos extending 3GPP control mechanisms – especially the core network and slicing – to fixed broadband infrastructure. Fixed broadband is absolutely critical, and complex software dependencies may trade off fine-grained control vs. resilience - and offer additional threat surfaces.
  • Democratising and improving satellite communications looks like an ever more wise move, for all sorts of reasons. It's not a panacea, but it's certainly "air-gapped" as above. 3GPP-based "non-terrestrial" networks, eg based on drones or balloons, also has potential - but will ideally be able to work independently of terrestrial networks if needed.
  • I haven't heard much about LPWAN and LoRa-type networks, but I can imagine that being useful in emergency situations too.
  • Sanctions, trade wars and supply-chain issues are highly unpredictable in terms of intended and unintended consequences. Technology diversity helps mitigate this, alongside supplier diversity in any one network domain.
  • Spectrum policy should enable enough scale economies to ensure good supply of products (and viability of providers), but not *so* much scale that any one option drives out alternatives.
  • The role and impact of international bodies like ITU, GSMA and 3GPP needs careful scrutiny. We are likely to see them become even more political in future. If necessary, there may have to be separate "non-authoritarian" and "authoritarian" versions of some standards (and spectrum policies). De-coupling and de-layering technologies' interdependency - especially radio and core networks - could isolate "disagreements" in certain layers, without undermining the whole international collaboration.
  • There should be a rudimentary basic minimum level of connectivity that uses "old" products and standards. Maybe we need to keep a small slice of 900MHz spectrum alive for generator-powered GSM cells and a box of cheap phones in bunkers - essentially a future variant of Ham Radio.

So to wrap up, I'm ever more convinced that Network Diversity is essential. Not only does it foster innovation, and limit oligopoly risk, but it also enables more options in tragic circumstances. We should also consider the potential risks of too much sophistication and pursuit of effiency and performance at all costs. What happens when things break (or get deliberately broken)?

In the meantime, I'm hoping for a quick resolution to this awful war. Slava Ukraini!

Sidenote: I am currently researching the areas of “technology lock-in” and “path dependence”. In particular, I have been investigating the various mechanisms by which lock-in occurs and strategies for spotting its incipience, or breaking out of it. Please get in touch with me, if this is an area of interest for you.

Thursday, January 06, 2022

Private 4G/5G: Three Markets, Not One

Private 5G segmentation: Introduction & Overview

Private 4G and 5G networks are rapidly becoming mainstream. This isn’t news.

But from recent conversations, client engagements and events, it’s becoming increasingly clear that many don’t quite grasp how private cellular use-cases are segmented – and why it’s going to get even more complex in the next 2-3 years.

In reality, this isn’t really “a market” in a singular sense. It’s currently at least three separate and distinct markets, with only minimal overlap at present. The main common thread is the deployment of cellular (3GPP 4G/5G) networks by non-MNOs.


A common fallacy involves talking about “vertical industries” as the main way to divide up the sector. But that doesn’t really work, as any given vertical has dozens of sub-categories and hundreds of potential applications and deployment scenarios. For instance, the “energy vertical” covers everything from a gas station, to an offshore windfarm, a 1000km pipeline or an oil-futures trading floor in a financial district.

Verticals are useful ways to divide up sales and marketing efforts, and make sense for cohesive reports, papers or webinars, but also blend together elements of three very different markets for private 4G/5G:

  •        Critical communications networks
  •        Indoor mobile phone networks
  •        Cloud and IT/IoT networks
No alt text provided for this image

It is worth discussing each of these in turn.

Critical communications networks

These have made up the bulk of major private network deployments over the last 5-10 years. They are typically deployed for utilities, oil & gas, mining, public safety, airports and military purposes. Often, they are used in rugged environments, for human communications (typically push-to-talk), as well as in-vehicle gateways and specific automation systems such as remote sensors and monitoring systems. The specialised GSM-R system for railways fits in this category as well.

Usually, they are replacing alternatives such as private mobile radio (PMR), TETRA and microwave fixed-links. They have typically been packaged and deployed by specialist integrators for sectors like oil-rigs or field-deployment by military units. There is limited “replicability”. They vary widely in size, from a single portable network for public safety, up to a national network for a utility company.

There is little need for interconnection with public mobile networks; indeed it may be specifically avoided in order to maintain isolation for optimal security and “air-gapping” for critical applications.

Most are 4G, reflecting mission-criticality and its frequent need for proven, mature technology and wide product availability. 5G is however used in certain niches and is being tested widely, although the most useful features will only arrive when Release 16/17 versions are commercialised in the next few years.

Indoor mobile phone networks

This includes some of both the oldest and newest deployments. Early local private 2G/3G networks essentially used GSM phones and thin slices of light-licensed/unlicensed spectrum to replace DECT cordless phones in a few markets – notably the UK, Netherlands and Japan.

They could also work with multi-SIM phones to blend public and private modes. I first saw an enterprise-grade GSM picocell in 2001, and an on-premise core network box in 2005. There are still several thousand such networks around, including ones updated to 4G and some that run on ships or onboard private jets.

More recently, there has been growing interest in using private 4G/5G to create neutral host networks for in-building, or on-campus coverage. There are multiple models for neutral host (I’ve counted around 10-15 variations), with some needing a full local network with its own spectrum and core, and others just relying on the tenant MNOs’ active equipment. In the US, CBRS-based options may turn out to be among the more sophisticated.

Whether used to support public MNOs more effectively than alternative indoor systems such as DAS (distributed antenna systems), or perhaps for linking to a UC / UCaaS system for enterprise voice, the main use-cases are for phones. They are almost always deployed for a single building or campus.

This segment is the most likely to require interconnection with the public mobile infrastructure, as well as supporting normal “phone calls” rather than push-to-talk voice.

Cloud and IT/IoT network

This category of private cellular is probably receiving the greatest attention from many newcomers to the sector, as well as external observers such as analysts and journalists.

It ties in with many of the newest trends around cloud and edge-computing, AI and machine vision in factories, robots and AGVs in warehouses, security cameras and more general IoT / smart building use-cases. It aligns with many of the "transformation" projects in IT, plus some parts of the OT (operational technology) space such as smart manufacturing.

As such, it tends to be viewed as a complement – or alternative – to other IT-type network technologies like Wi-Fi and fibre-based ethernet. And given that many of the use-cases have a heavy cloud (or at least multi-site WAN) orientation, there is more acceptance of virtualisation of cores and perhaps in future the RAN.

This is currently the area with the greatest amounts of experimentation and innovation – although actual large-scale operational deployments are still relatively few. There is more focus on 5G than 4G, although that might change as executives learn more about the practicalities and economics. Vendors often orient on the soundbite that "private 5G should be as easy as Wi-Fi".

There is a major focus on automation, replicability and ease-of-use. This was exemplified by the recent AWS Private 5G announcement, which seems squarely aimed at this segment.

However, there is perhaps a divide opening between the IT-type scenarios (where it can be seen as a sort of enterprise Wi-Fi-on-steroids vision) and OT deployments in which it gets embedded into larger industrial automation or other systems, such as factory robots or dockside cranes. In the latter scenarios we can see companies like Siemens integrating cellular into their wider systems, just as they have historically used Wi-Fi/WLAN and fibre.

Although the main focus is on building / campus networks for this model, it may also extend to larger domains such as smart cities, as well as multi-location users such as retail chains.

There is some overlap with the critical communications segment, but that is fairly rare at the moment, especially given the lesser role (and trust) of public cloud in many of those areas.

In addition, there is a fair amount of talk about interconnection with the public mobile network (especially where telcos are acting as vendors), but in reality, that's a secondary consideration that doesn't go much beyond a PowerPoint slide for now. There are certain exceptions which are interesting, but they're far from typical.

Conclusions and the Future of Private Networks Segmentation

At present, the "private 5G market" is actually at least three separate markets. And it's mostly about private 4G rather than 5G. Critical communications networks, indoor mobile phone networks and cloud/IT/IoT networks are largely distinct in terms of motivations, channels, economics, devices and applications. There is much less overlap than many observers expect.

(There are also smaller adjacent sectors such as community networks, 4G/5G-based FWA and other specialities).

But over the next 1-2 years, we can expect the three bubbles on the Venn diagram to overlap more – although asymmetrically. Critical and cloud/IoT networks will start to become hybridised. Critical 4G/5G networks in mines or utility sites will start to support extra IT-like applications, for instance (although that probably won't need formal network slicing).

Some enterprise private cellular networks will examine adding neutral-host and inbound roaming or interconnect from public MNOs' subscribers – although there are assorted regulatory and security/operational hurdles to address.

There won't be much overlap between critical networks and neutral/guest cellular, though. Nobody's smartphone will be roaming from their normal consumer 5G network onto the utility company's private infrastructure, I think. A few employees' devices might have special arrangements though.

But we will also see the emergence of a number of additional bubbles on the chart, some of which are more like "quasi-private" models, such as outdoor neutral host networks, selling wholesale capacity to MNOs. There will be various forms of Wi-Fi integration (but probably less than many expect / want). And we will undoubtedly see maturity of both cloud-delivered private cellular like AWS's, and (belatedly) some sort of MNO-based network slice integration.

And if you want an "outlier" to ponder, consider the potential for grassroots private "consumer-grade" 5G. There's a lot of hype about things like Helium's decentralised and blockchain-based model, but I'm deeply sceptical of this (that's for another post, though). More likely is the emergence of a true Wi-Fi hotspot approach, where we start to see lightweight "free 5G" options, using unlicensed (or maybe CBRS GAA) spectrum, with a cheap core and small cell. Scan the QR code next to the barista to download your eSIM, and you're good to go….


The bottom line is that the private 4G/5G market is complex and nuanced. Market statistics frequently combine everything from a nationwide utility's or railway's critical infrastructure, to a few small-cells connecting up digital signs in a mall car-park. It's easy to assume it's all about millisecond-latency robots zipping about factories, rather than a security guard with a handheld radio, or indoor network coverage for a hotel.

Operators, vendors, enterprises and governments need to delve a bit more deeply than just talking about "verticals" for private cellular, or else they risk making errors with their product portfolios or regulatory direction.

Dean Bubley (@disruptivedean) is a wireless technology analyst & futurist, who advises a broad range of companies and institutions active in the 5G, Wi-Fi and cloud marketplaces. He has covered private cellular networks for more than 20 years. He is a regular speaker and moderator at live and virtual events. Please get in touch on LinkedIn or via information AT disruptive-analysis DOT com for advisory or speaking requests.

#Private5G #Private4G #CriticalCommunications #5G #IoT #IIoT #Cloud #WiFi #verticals

Monday, November 29, 2021

Update: Recent Posts & Themes

(This article was initally posted on my LinkedIn newsletter. If you are not already signed up, please subscribe here)

I have a couple of other deep-dive themes cued up for articles in coming weeks, but I wanted to put out a quick newsletter update covering a few recent themes, posts and events that have been occupying me.


The last month has featured a lot of thinking, speaking & client engagements on private 5G, infrastructure-sharing and neutral-host business models, network slicing and capability/API exposure, Wi-Fi 6E & 6GHz, Open RAN and the interaction of cellular & other wireless technologies.

Some recent short-form posts that you may have missed:

  • Telecom operators (and their partners & regulators) should be giving as much consideration to *buying* APIs and capabilities as selling them - LINK
  • Thoughts on the Ericsson / Vonage acquisition - LINK
  • Should we be thinking more about "micro-churn" incidents, where subscribers temporarily switch between operators, using technologies such as eSIM? - LINK
  • Want me to speak at, or moderate your 2022 event? Or present at an internal workshop or offsite? - LINK
  • RCS messaging is still a purposeless zombie technology, continuing to eat brains after 13 years. Google's involvement hasn't changed much - LINK
  • The telecoms industry still hasn't gone beyond telephony, to think more broadly about "voice" services & applications - LINK

I've been to a couple of recent "verticals" events, about networking in ports and for railways. There's a lot of interest in private cellular - but also a huge amount of emphasis on Wi-Fi, including specialised versions with 60GHz or unique forms of QoS intended for industrial or trackside use.

I also presented on a webinar recently on behalf of iBwave, about the scope for Private 4G/5G networks for utilities and energy companies (LINK to view on-demand). Watch out for an upcoming eBook on the same topic. Another webinar on the competiton/convergence between Wi-Fi6 and 5G was for Spirent (LINK


Scott and Iain at Telecoms.com invited me onto their weekly podcast for a (rather irreverent) chat about the current trends and news from the industry, over a couple of beers. We took aim at 5G, the Metaverse, Open RAN & a lot more. YouTube link embedded above!

In addition, I moderated a panel on Infrastructure Sharing for the 5G Techritory event. I'm not sure if an archived version will be put online, but keep a watch out for it here.

And on a personal note, I also took part in my first improv comedy performance. If you book me to speak at one of your events, I can't promise to wear the same shirt as in the picture, but I will certainly be happy to make things up on the spot spontaneously, or deal with any hecklers ruthlessly!

#5G #WiFi #verticals #PrivateLTE #Private5G #mobile #telecoms #spectrum #voice #messaging #networkslicing #neutralhost #regulation

Sunday, November 07, 2021

No, the Metaverse is not the killer app for 5G

(This article was initially published on my LinkedIn Newsletter - click here to see the original, plus comment thread. And please subscribe!)

Let's stop the next cliche before it even starts.

Most knowledgeable people now roll their eyes in derision whenever they hear the words 5G and autonomous driving (or robotic surgery) mentioned in the same sentence. But the mobile industry's hypesters are always casting around for some new trope - and especially the mythical "killer app" that could help to justify the costs and complexity.

And as if on cue, the Metaverse - essentially a buzzword meaning a hybrid of AR/VR with the social web, collaboration and gaming - has captured the headlines.

No alt text provided for this image

The growing noise around Metaverse technologies - and especially Facebook's recent rebrand to Meta - is attracting a whole slew of bandwagon-jumpers. The cryptocurrency community has been the first to trumpet its assumed future role - perhaps unsurprisingly, since they tend to be even more fervent and boosterish than the mobile sector. But we're also seeing the online shopping, advertising and gaming worlds hail the 'Verse as the next big thing.

Next up - I can pretty much guarantee it - will be the 5G industry talking about millisecond latency and buying a "Metaverse network slice". We'll probably get the edge-computing crowd popping up shortly afterwards too. I've already seen a few posts hailing the Metaverse as the possible next big thing for MNOs (mobile network operators).

They're wrong.

The elephant in the room

If you've found this article without knowing my normal coverage themes, you might be surprised to read that the single biggest issue for connecting Metaverse devices and users will be real, physical walls.

If you go through Mark Zuckerberg's lengthy video intro to Meta and his view of future technologies, you'll notice that a high % of scenarios and use-cases are indoors. Gaming from your sofa. Virtual living rooms. Hybrid work environments blending WFH with in-person meetings, and so on.

This shouldn't be a huge surprise. The more immersive a technology is - and especially if it's VR rather than AR based - the more likely people will take part while seated, or at least not while walking around an outdoor environment with obstacles and dangers. Most gaming, and most business collaboration takes places indoors too.

And indoor environments tend to have particular ways that connectivity is delivered to devices. Generally, Wi-Fi tends to be used a lot, as the access points are themselves indoors, at the end of broadband connection or office local area network.

Basically, wireless signals at frequencies above 2-3GHz don't get inside buildings very well from outside, and the higher the performance, the worse that propagation tends to be. Put simply, 5G-connected headsets and other devices will generally not work reliably indoors, especially if they have to deliver consistent high data speeds and low latencies which need higher frequencies. We can also expect the massive push for Net Zero in coming years to mean ever-better insulated buildings, which will make matters even worse for wireless signals as a side-effect.

For sure, certain locations will have well-engineered indoor 5G systems that will work effectively - but software developers generally won't be able to assume this. Airports, big sports venues, shopping malls and some industrial sites like factories will be at the top of the list for these types of solutions. For those locations, 5G Metaverse connections may well be widely used and effective. However, those are the exceptions - and it will take many years to deploy new in-building systems, or upgrade existing infrastructure anyway.

In particular, most homes and offices will have patchy or sometimes no 5G coverage, especially in internal rooms, elevators or basements. (There might be a 5G signal or logo displayed on the device, but that doesn't mean that the famously-promised gigabit speeds or millisecond latencies will actually be deliverable).

In those locations, expect Metaverse devices to use Wi-Fi as a baseline - and increasingly the Wi-Fi 6/6E/7 generations with better capabilities than previous versions.

What the Meta video tells us

I'm aware that the Metaverse is more than just Facebook / Meta, but the 1h17 video from Zuck (link) is not a bad overview of what to expect in terms of experiences, devices and business models. Obviously there will be different views from Epic Games, Microsoft's various initiatives around Hololens and Mesh, plus whatever Apple is quietly cooking up, but this is a decent place to start.

The first thing to note is the various Horizon visions that Meta is pitching - Home, Worlds and Workrooms. These are (broadly) for close social interaction, gaming/larger-scale social and business collaboration - especially hybrid work.

Mostly, the demos and visions are expected to take place from the participant's home, office, school or similar venue. There's a couple of outdoor examples of enhanced sports, or outdoor art/advertising as well. Virtual desktops, avatars that mimic eye and facial movements and so on.

In terms of devices, there's a large emphasis on headsets (obviously the Oculus Quest, and also the new high-end Cambria device promised for 2022) as well as discussions of AR glasses, from the RayBan Stories recently launched, to a forthcoming project called Nazare.

The technology discussion is all around the functional elements, not the connectivity. Optics, sensors, batteries, displays, speakers, cameras and so on. There are developer tools for hand and voice interaction, and presence / placement of objects in the virtual realm. There's lots of discussion around creators, advertising and the ability to own (and interoperate) virtual avatars, costumes and furniture. There are also nods to privacy, as would be expected.

There's no mention of connectivity, apart from noting that Cambria will have radios of some sort. The section on the "Dozen major technological breakthroughs for next-gen metaverse" doesn't mention wireless, 5G or anything else.

No alt text provided for this image

It's worth noting that Oculus devices and the RayBan glasses today use Wi-Fi. We can also expect the gesture-control in future will likely lean on UWB sensors. Outside of Facebook / Meta essentially all of today's dedicated AR/VR headsets connect with Wi-Fi or a cable, to a local network or broadband line. (That might be 5G fixed-wireless to the building for a few % of homes, but that will still use Wi-Fi on the inside).

Where cellular 4G/5G takes a role in XR is where the device is tethered to a phone or modem, or is experienced actually on the smartphone itself - think Pokemon Go, or the IKEA app that lets you design a room with virtual furniture.

We can expect the same with the Metaverse. If you're using a smartphone to access it, then obviously 5G will play a role, just as it will for all mobile apps in 3-4 years time when penetration has increased.

Will Cambria and future iterations feature 5G built-in? Maybe but I doubt it, not least because of the extra cost and engineering involved, as well as multiple versions to support different regional frequency options. Would a future Apple AR/Metaverse headset feature cellular, like some versions of the Watch? Again, that's possible but I wouldn't bet on it.

In the second half of the decade, later versions of 5G (Release 17 & 18) will have useful new features like centimetre-accuracy positioning that could be useful for Metaverse purposes - but again, that's reliant on having decent coverage in the first place. There will likely be some useful aspects outdoors though - for instance accurate measurement of vehicles on roadways.

Facebook Connectivity becomes Meta too

One other thing I noticed is a reference on LinkedIn to Facebook's often-overlooked Connectivity division, which does all sorts of interesting programmes and initiatives like TIP (which does OpenRAN and other projects), Terragraph 60GHz mesh, Express Wi-Fi and the low-end Basics "FB-lite" platform for developing markets with limited network infrastructure.

No alt text provided for this image

Apparently it's now being renamed Meta Connectivity - partly I guess because of the reorganisation and rebranding of the group overall, but also as a longterm part of the Metaverse landscape.

To me, that also indicates that the Metaverse is going to use multiple wireless (and wired) technologies - which aligns with Zuckerberg's view that it's more of a reinvention of the Internet/Web overall, rather than a particular app or experience.

Bandwidth-heavy? Or perhaps not....

One other thing needs to be considered around the Metaverse and connectivity. The immediate assumption is that such a "rich" environment, either full-virtual or overlaid onto a view of the real world, will need lots of data - and therefore the types of bandwidths promised by 5G. If we all use Metaverse devices to project "virtual TV screens" onto virtual surfaces, it will use lots of capacity, supposedly.

But it strikes me that avatars (even photo-realistic ones) & 3D reconstructions of real-world scenes will likely need less bandwidth than actual video. Realtime rendering will likely be done on-device in most cases, just sending the motion/sensor data or metadata about objects over the network.

Clearly this will depend on the exact context and application, but if your PC or phone or headset has a model of your friend's virtual house, or your virtual conference room - and all the objects and people/avatars in it - then it doesn't actually need realtime 4K video feeds to show different views.

In addition, the integration of eye-tracking allows pre-emptive downloads or actions, so "pseudo-latency" can seem very low, irrespective of the network's actual performance. If the headset sees you looking at a football, it can start working on the trajectory of a kick 10's or even 100's of milliseconds before you move your virtual leg.

That said, the sensor data uplink & motion control downlink will need low latency, but I suspect that will be more about driving localised breakout and peering rather than genuine localised compute. If you're in a hybrid conference with distant colleagues, the main role for edge-computing is to offload your data to the nearest Internet exchange with as few hops as possible.

(Some of the outdoor scenes in the Meta video from Connect seem rather unrealistic. They show groups of people playing table tennis and a virtual basketball match with "friends on the other side of the world", which would involve some interesting issues with the speed of light and how that would impact latency.)


In a nutshell - no, the Metaverse isn't the killer app for 5G.

The timelines align between the two, so where 'Verse apps are used on smartphones they'll increasingly use 5G if it's available and the user is out-and-about. But that's correlation, not causation. Those smartphones will typically be connected via Wi-Fi when at home, school or work. I suspect the main impact on smartphones will be on the need for better 3D graphics capability and enhanced sensors and cameras, rather than the network side.

Will we see some headsets or glasses with built-in cellular radios, some with 5G support? Sure, there will certainly be a few emerging in coming years, especially for enterprise / private network use. I'd expect field-workers, military, or industrial employees to exploit various forms of AR and VR in demanding situations well-suited to cellular, although many will tether a headset or glasses to a separate modem / module to reduce weight.

Many devices will also include various other wireless technologies too - Wi-Fi, Bluetooth, maybe Thread/Matter, UWB and so on.

But if anything, I suspect that the Metaverse may turn out to be the killer app for WiFi7, especially for home and office usage. That doesn't mean that 5G won't benefit as well - but I don't see it as a central enabler, given the probable heavy indoor bias of the main applications. (I don't think that cryptocurrency or edge-computing are key enablers either, but those are debates for another day)

(This article was initially published on my LinkedIn Newsletter - click here to see the original, plus comment thread. And please subscribe!)

#Metaverse #Facebook #Meta #AugmentedReality #VirtualReality #5G #WiFi #MixedReality #Mobile #Wireless #Devices #Gaming #Collaboration #HybridWorking