Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label mesh networks. Show all posts
Showing posts with label mesh networks. Show all posts

Thursday, February 23, 2023

Local networks: when telecoms becomes "pericoms"​

Published via my LinkedIn Newsletter - see here to subscribe / see comment thread

"Telecoms" or "telecommunications" is based on the Greek prefix "tele-".

It means "at a distance, or far-off". It is familiar from its use in other terms such as telegraph, television or teleport. And for telecoms, that makes sense - we generally make phone calls to people across medium or long distances, or send then messages. Even our broadband connections generally tend to link to distant datacentres. The WWW is, by definition, worldwide.

The word "communications" actually comes from a Latin root, meaning to impart or share. Which at the time, would obviously have been done mostly through talking to other people directly, but could also have involved writing or other distance-independent methods.

This means that distant #communications, #telecoms, has some interesting properties:

  • The 2+ distant ends are often (but not always) on different #networks. Interconnection is therefore often essential.
  • Connecting distant points tends to mean there's a good chunk of infrastructure in between them, owned by someone other than the users. They have to pay for it, somehow.
  • Because the communications path is distant, it usually makes sense for the control points (switches and so on) to be distant as well. And because there's typically payment involved, the billing and other business functions also need to be sited "somewhere", probably in a #datacentre, which is also distant.
  • There are a whole host of opportunities and risks with distant communications, that mean that governments take a keen interest. There are often licenses, regulations and internal public-sector uses - notably emergency services.
  • The infrastructure usually crosses the "public domain" - streets, airwaves, rooftops, dedicated tower sites and so on. That brings additional stakeholders and rule-makers into the system.
  • Involving third parties tends to suggest some sort of "service" model of delivery, or perhaps government subsidy / provision.
  • Competition authorities need to take into account huge investments and limited capacity/scope for multiple networks. That also tends to reduce the number of suppliers to the market.

That is telecommunications - distant communications.

But now consider the opposite - nearby communications.

Examples could include a private 5G network in a factory, a LAN in an office, a WiFi connection in the home, a USB cable, or a Bluetooth headset with a phone. There are plenty of other examples, especially for IoT.

These nearby examples have very different characteristics to telecoms:

  • Endpoints are likely to be on the same network, without interconnection
  • There's usually nobody else's infrastructure involved, except perhaps a building owner's ducts and cabinets.
  • Any control points will generally be close - or perhaps not needed at all, as the devices work peer-to-peer.
  • There's relatively little involvement of the "public domain", unless there are risks like radio interference beyond the network boundaries.
  • It's not practical for governments to intervene too much in local communications - especially when it occurs on private property, or inside a building or machine.
  • There might be a service provider, but equally the whole system could be owned outright by the user, or embedded into another larger system like a robot or vehicle.
  • Competition is less of an issue, as is supplier diversity. You can buy 10 USB cables from different suppliers if you want.
  • Low-power, shared or unlicensed spectrum is typical for local #wireless networks.

I've been trying to work out a good word for this. Although "#telecommunications" is itself an awkward Greek / Latin hybrid I think the best prefix might be Greek again - "peri" which means "around", "close" or "surrounding" - think of perimeter, peripheral, or the perigee of an orbit.

So I'm coining the term pericommunications, to mean nearby or local connectivity. (If you want to stick to all-Latin, then proxicommunications would work quite well too).

Just because a company is involved in telecoms does not mean it necessarily can expect a role in pericoms as well. (Or indeed, vice versa). It certainly can participate in that market, but there may be fewer synergies than you might imagine.

Some telcos are also established and successful pericos as well. Many home broadband providers have done an excellent job with providing whole-home #WiFi systems with mesh technology, for example. In-building mobile coverage systems in large venues are often led by one telco, with others onboarding as secondary operators.

But other nearby domains are trickier for telcos to address. You don't expect to get your earbuds as an accessory from your mobile operator - or indeed, pay extra for them. Attempts to add-on wearables as an extra SIM on a smartphone account have had limited success.

And the idea of running on-premise enterprise private networks as a "slice" of the main 4G/5G macro RAN has clearly failed to gain traction, for a variety of reasons. The more successful operators are addressing private wireless in much the same way as other integrators and specialist SPs, although they can lean on their internal spectrum team, test engineers and other groups to help.

Some are now "going the extra mile" (sorry for the pun) for pericoms. Vodafone has just announced its prototype 5G mini base-station, the size of a Wi-Fi access point based on a Raspberry Pi and a Lime Microsystems radio chip. It can support a small #5G standalone core and is even #OpenRAN compliant. Other operators have selected new vendors or partners for campus 4G/5G deployments. The 4 UK MNOs have defined a set of shared in-building design guidelines for neutral-host networks.

It can be hard for regulators and policymakers to grasp the differences, however. The same is true for consultants and lobbyists. An awful lot of the suggested upsides of 5G (or other forms of connectivity) have been driven by a tele-mindset rather than a peri-view.

I could make a very strong argument that countries should really have a separate pericoms regulator, or a dedicated unit within the telecoms regulator and ministry. The stakeholders, national interests and economics are completely different.

A similar set of differences can be seen in #edgecomputing: regional datacentres and telco MEC are still "tele". On-premise servers or on-device CPUs and GPUs are peri-computing, with very different requirements and economics. Trying to blur the boundary doesn't work well at present - most people don't even recognise it exists.

Overall, we need to stop assuming that #pericoms is merely a subset of #telecoms. It isn't - it's almost completely different, even if it uses some of the same underlying components and protocols.

(If this viewpoint is novel or interesting and you would like to explore it further and understand what it means for your organisation - or get a presentation or keynote about it at an event - please get in touch with me)

Friday, March 15, 2019

Wi-Fi dominates in the home, but the industry cannot be complacent about the challenges of 5G

I recently gave a keynote speech at the Wi-Fi Now conference in Shanghai (link), which was co-located with the Wi-Fi Alliance's Asia regional members' meeting. My presentation (link) covered the forthcoming opportunities and challenges for Wi-Fi technology and solutions.



My key points were that of a mixed, nuanced, good/bad story:
  • The position of Wi-Fi in the home is extremely strong. The growth of whole-home Wi-Fi using extenders and mesh-network technology, cloud management platforms and the imminent arrival of Wi-Fi6 (formerly 802.11ax) for more capacity and performance, gives it an unassailable lead for most domestic applications and devices.
  • 4G and 5G pose almost no threat to Wi-Fi dominance in the home. While smartphone users may spend slightly more time on cellular if they have large/unlimited data plans, this is more than offset by greater use of Wi-Fi-only devices (TVs, PCs, smart speakers & other IoT products). Few homes or people will go smartphone-only, especially in developed economies. Furthermore, cellular networks lack the in-home positioning and intelligence layer of newer Wi-Fi solutions. Fixed-wireless 5G will almost always need Wi-Fi inside, connected to an external/window antenna. Even in the (few) places 5G FWA can substitute for fixed/cable broadband, it will still mostly deliver last-metre connections via Wi-Fi.
  • A small number of future consumer IoT devices may have "direct to cellular" connections, but these will be the minority, typically restricted to out-of-home products like pet trackers or smart watches. 5G/eSIM-based PCs, wearables & tablets will remain a tiny % of the total device universe. Don't expect 5G-enabled TVs or 4G/NB-IoT washing machines. For low-power smart home products, alternative connections like Bluetooth and ZigBee will remain important - not everything can use Wi-Fi. There might be some LPWAN devices using SigFox, LoRa or perhap Wi-Fi's own HaLow technology, although that is still moving only slowly.
  • In "carpeted enterprise" offices, Wi-Fi will remain critical for many users, alongside wired ethernet for desktops, servers and other non-moving equipment. While there will be a growing need for better indoor 4G/5G coverage (especially in higher frequencies), that cannot replace normal LAN technology. Users will expect both Wi-Fi and cellular to have reliable indoor coverage, capacity and security. The Venn diagram of use-cases only has a narrow overlap. That said, delivering good Wi-Fi indoors is not easy - and like cellular, it will need more "deep fibre", especially for higher frequency bands in future, like 6GHz or 60GHz.
  • Industrial Wi-Fi faces more challenges. While for many applications, industrial-grade Wi-Fi and meshes is widely used, the growth of IoT, robotics and realtime automation/cloud will start to make wireless connectivity more business-critical, and in some cases safety-critical. Unlicensed spectrum, and limited coverage/mobility support may make Wi-Fi's role prone to substitution by public and private 4G/5G networks in some cases. There appears to be more work being done to make spectrum available, as well as integrate with manufacturing / process machinery on the cellular side. There doesn't appear to be as much of a cohesive ecosystem - I don't see a Wi-Fi equivalent of the 5G Alliance for Connected Industries and Automation, for instance. 
  • Limited focus on verticals and testbeds. While I'm skeptical of mobile operators' roles in pushing 5G solutions on various sectors, there is no doubt that the cellular industry is working hard. There are countless "5G for Sector X" associations and collaborations, multiple university and government 5G research institutes, and promotional efforts galore. Why is there no equivalent "University of ABC Wi-Fi Innovation Lab", of "Wi-Fi Healthcare Alliance", where vendors and developers can experiment with new use-cases and create more public "buzz"? The industry - and its major vendors - need to step up and increase funding for this sort of thing. Broadcom, Qualcomm, Cisco, Google, Intel, HPE, Amazon, Arris etc - I'm looking at you.
  • Public Wi-Fi faces growing risks. While I'm writing this article on my laptop in a cafe, most of my fellow coffee-drinkers are using smartphones. This location has a simple one-click access to Wi-Fi, but other places often have crass and privacy-invasive attempts to "monetise" Wi-Fi, with extra login personal data demanded, or attempts to get users to connect with FB or Twitter accounts. The growing number of large/unlimited data-plans, coupled to reduced roaming fees for travellers, and even tethering for PCs, makes the relative pain of accessing 4G vs. public Wi-Fi very different to a few years ago. Venues wouldn't force people to give email addresses or social logins to use amenities like elevators or bathroooms; they shouldn't for Wi-Fi either. The industry should campaign against cumbersome logins. It doesn't need full automation like PassPoint or HotSpot 2.0 - just "frictionless" access. One click on a splash-screen is fine.
  • The Wi-Fi brand is over-protected. Technically, Wi-Fi is a brand that can only be used by products or SPs that get certification from Wi-Fi Alliance. The technology is based on IEEE 802.11 standards. While the guarantee of interoperabilty and "it works anywhere" is great, this poses a problem. There's a lot of cool stuff being done with 802.11 that isn't standardised and fully certified. I've seen licensed-spectrum versions (potentially more suitable for industrial markets). There's some great innovation with 60GHz 802.11, formerly called WiGig. Some vendors have proprietary tweaks, like Blu Wireless allowing gigabit transmission to fast-moving vehicles with handoffs in the UK AutoAir testbed (link). These innovators can't use the term "Wi-Fi", so instead they call their products "5G", adding to the noise and hype - and its impact on regulators and policymakers who then think that 5G deserves special treatment (and spectrum). In my view, the Wi-Fi industry is undermining its own importance, especially if they want to create a case for 6GHz, or other future bands. Most people in politics don't grasp Wi-Fi's level of economic and societal contributions, so to me this seems to be an own-goal. Maybe WFA should create a new category called something like Wi-FiX for "experimental" technologies to capture this extra goodwill.
  • Wi-Fi combines well with other technologies. I'm seeing a growing amount of important intersections between Wi-Fi and other domains. AI, for instance, is being used to manage Wi-Fi fleets by major service providers, as well as cloud companies. Juniper just acquired Mist Systems for its AI-enhanced Wi-Fi solution (link). It's being integrated with both consumer and enterprise IoT. Amazon just acquired eero, a home mesh-Wi-Fi specialist. I'd be unsurprised to see some sort of Alexa-eero hybrids in future (link). And I've written before about the Wi-Fi + blockchain opportunities, including those of my friends at AmmbrTech (link) and assorted others. There's some cool stuff using Wi-Fi for motion-detection as well.
  • The Wi-Fi industry needs to be emphatic - and fast - about creating versions designed to work in all spectrum bands, licensed, unlicensed and shared. There are use-cases for all of these, especially with moves to opening up CBRS and c-Band for more innovative use-cases. We see cellular technologies adopting unlicensed variants like 4G-LAA and MulteFire. Wi-Fi should make the opposite & equivalent move.
  • Yes, 5G and Wi-Fi will work together. Absoutely, I see many reasons to integrate 4G, 5G and Wi-Fi in various guises, both at a network level and service level. We will see MNOs that have big Wi-Fi footprints. We'll see 5G FWA with Wi-Fi indoors. We see dual-connected home broadband gateways with both fibre and cellular modems. We have offload, onload, Wi-Fi first MVNOs, Wi-Fi calling and and non-3GPP access to 4G and 5G core networks. This trend will continue. Yet I still see ignorant references to Wi-Fi being "part of 5G", or "killed by 5G". It is neither; sometimes the technologies will be complementary, and sometimes competitive or substitutive. But in all cases, they compete for the oxygen of publicity, attention and policymaker focus. The Wi-Fi industry needs to shout louder to the media and governments.
  • This is Wi-Fi's 20th Anniversary year as a consumer brand, notably. Maybe Apple (which launched its original AirPort in 1999) might pull a "One more thing..." surprise this year...
In summary: I'm very positive about Wi-Fi, especially with the capabilities of mesh, cloud and Wi-Fi6 for the home. But I'm also concerned that the industry isn't being sufficiently ambitious. Yes, in the US there are a lot of positive signs from the FCC about 6GHz The recent European emphasis on Wi-Fi derived DSRC for vehicles is another win. But while those could be big successes, and keep the industry busy for a long time, it's not enough. 



In industrial use-cases, Wi-Fi faces significant challenges. For public hotspots, some venues' ludicrous sign-up demands are self-defeating and harm overall public perception of the technology. HaLow isn't getting enough attention in the LPWA space. The industry needs to market itself more loudly, more globally, and to a wider audience. It needs to create more space for innovators and developers, with collaboration forums and easier access to documents - and a willingness to extend the brand's goodwill, even to those that aren't doing something fully-standardised.

The Wi-Fi industry deserves congratulations on 20 years and $2trillion of economic value. But it needs to double-down on its scope and ambitions, to make sure it will be in strong position at its 40th as well.


Watch out soon for a podcast covering this article - my SoundCloud account is here (link)

And if this is an area where you'd be interested in my input for advisory work, speaking/presentations, or other engagements, please contact me via information AT disruptive-analysis dot com

I will also shortly be publishing a long-form research report on the Consumer Wi-Fi sector, as part of my Network Futures subscription stream with STL Partners (link). It looks at some of the issues raised here in more detail, and focuses in particular on the implications and role of telecom operators and other broadband providers. I'll update this blog post, and also put out details on my Twitter account (link) when it's available.

Tuesday, August 22, 2017

Blockchain for telecoms and networks: the emergence of ICOs & token-based platforms

There's a new trend I'm currently seeing emerge: ICOs (Initial Coin Offerings) for network/Internet-related businesses and communities. These use blockchain-based "tokens" (or coins) as a way to build decentralised marketplaces, for Internet connectivity or other communications capabilities like phone calls. Most have visions for long-term disruption of existing models, although they tend to start from more humble niches.

ICOs both establish a "currency" for these future markets, and provide funding for organisations responsible for their creation and maintenance. At least five network-related ICOs have been announced already, and more seem likely to follow in due course. (Disclosure: I'm an advisor to one of these five - more details below).

Note: If you've found this post through a link from a mainstream ICO/Bitcoin site or link, a quick introduction: I'm primarily a mobile and telecoms analyst. I study and advise on technology and business-model trends relating to network evolution and communications applications. I cover areas like 5G, IoT-oriented networks, voice & video communications, regulatory policy, the future role of telecom operators, and the impact of "futures" innovations like AI / ML, blockchain and drones on telecoms. Most of my clients are telcos or network equipment/software vendors. I'm not a fintech or blockchain generalist.

Note 2: I am also not an investment advisor of any sort. I'm not making recommendations here.


I've been covering the role of blockchains and distributed ledgers in telecoms and networks for well over a year now. I've spoken at events run by TMForum, IIT, Comptel and others about the telecom-sector use-cases (and complexities), and ran a recent public workshop in London alongside Caroline Gabriel (link). I recently participated in a webinar for Juniper Networks (link) and have a forthcoming white-paper in preparation for Juniper as well.

My general stance is "pragmatic optimism": Blockchain technology has many possible touch-points with the telecoms industry, from data-integrity management to back-office systems to billing - but maturity will take time. Some of the utopian "it'll change the world" and "telcos are obsolete" rhetoric is overblown. Distributed ledgers will have many uses and opportunities in telecoms/networking - but are unlikely to overturn or radically-disrupt industry structures, at least on a 5-10 year view.


Most of the uses I've seen discussed until recently have been around private (permissioned) blockchains, intended to improve processes and security within or between telcos and their suppliers. Another set have been around new services/capabilities to be delivered by telcos - for example, using smart contracts to enforce SLAs (service-level agreements), or for identity-management in IoT networks.

The ICO trend is different - this is about public blockchain-based functions that anyone can participate in - hence the "offering". The idea is to create common, distributed, dynamic ways of storing (and pricing) network-related value - especially for Internet access, but also voice communications and potentially other capabilities. 

Actually, telecoms is lagging here: there's been a much broader rush towards ICOs across many sectors over the past year. This website (link) lists hundreds, while this article from the Economist is a useful intro (link). It should also be acknowledged that they have attracted not-always-favourable attention from financial regulators, as there is limited official oversight and most are launched as "crowdsales" on the back of a white paper and some PR, rather than a regulated prospectus and well-monitored issuance on a specific stock exchange. There are some questionable-quality ICOs and a few dubious individuals involved, it seems. Nevertheless, they are a popular way for blockchain-based initiatives to get funding and early traction - and some will undoubtedly becomes stars, even if others flame-out like supernovae.

In a way, a system for exchanging telecoms capacity or data quotas already exists - it's possible to send prepay account "top-ups" between people or companies today, although those are usually in monetary form (ie PAYG credit), rather than being denominated in minutes or MB. That is unsurprising, given the diversity of different pricing models and network operators - it would be hard for me to gift a GB of data to a friend on a different network, but I can send them a £5 / $5 / €5 credit and let them buy the data themselves. There are also other ways to share network capacity, such as FON's WiFi community.

The various ICOs are attempting to "tokenise" aspects of networks and communications, allowing different models of monetisation, with pricing driven by an external market rather than telcos' / ISPs' internal marketing functions. Some link to an existing cryptocurrency and blockchain like Ethereum, while others are trying to create something new.

The ones I've discovered that are clearly related to telecoms/networks include:
  • DENT Wireless (The website is here & white paper is here): This aims to act as a clearinghouse for mobile data quotas / allocations, between users, between MNOs, or for roaming "local breakout" via visited networks, using its tokens as a common currency. Its ICO, based on Ethereum, was in July. It is aiming to build up enough members as a "buying consortium" to exert pressure on operators to cooperate. It's got some interesting execs and advisors, notably including Rainer Deutschmann who has been instrumental in getting Reliance Jio off the ground in India. One of the use-cases is "donating GB of data to Africa" as a way to improve Internet access in emerging markets. One interesting angle is a tie-up with sponsored-data software company Aquto, which works with AT&T and others. My longterm doubts about the general sponsored-data model continue (the concept of "1-800 apps" is palpable nonsense), but this could be a possible workable use-case. The key differentiator appears to be its willingness (& knowledge) of partnering with operators rather than trying to displace them. Given the wide variations of mobile data pricing (& conditions) by operator, country and tariff - especially postpaid vs prepaid - I'm not sure there's an easy common denominator, though. The inbound roaming scenario may be very tough as well, especially as it may need users to manually select networks, which they may be locked-out from doing on subsidised/customised handsets.
  • AirFox (The website is here & the white paper is here): This platform attempts to draw a link between mobile prepay credits, advertising, user-data and potentially micro-loans in future. It extends the current model of gifting or sending "recharges" to many international mobile operators' prepay customers, by shifting from normal payments to a cryptocurrency bought in a marketplace or earned by viewing ads. The model of "watch these ads and get free calls/credit/data" is not a new one (eg Blyk in the UK between 2007-09), but this is the first decentralised and tokenised one I've seen, linked to a global recharge network. It relies on a customised browser and also a dedicated ad-viewer/recharge app. The browser blocks native ads and replaces them with its own (and can also fingerprint the user by looking at other apps installed). Users can thus earn Ethereum-based "AirTokens" or alternatively they can buy them at market rate, to exchange for prepay credit / recharges. It's not obvious to me how AirFox proposes to "bulk buy" data from operators without wholesale/MVNO deals - in most cases I suspect it'll have to use the usual recharge channels. Its aspiration to "replace the current mobile ecosystem (applications, sites, advertisers, data purchases) with a more efficient new decentralized AirFox mobile ecosystem" seems unrealistic given that most mobile users prefer native apps (or web-pages rendered in apps). Nevertheless, the existing model of sending real ("fiat") money or top-ups seems to work, so there's a basis for an ad-supported model, although its existing stats imply a revenue of 1/17th of a US cent per ad. The ICO / crowdsale launches on August 29th.
  • Ammbr (The website is here & the white paper is here): [Note - I am an advisor - see below]. This is an attempt to blend custom mesh-network silicon and hardware units, with a blockchain and token-based model for identity and a marketplace. While AirFox and DENT focus on sharing credits/quotas for normal personal mobile access, Ammbr wants to share the access network itself, and ultimately encourage build-out of extra coverage and capacity. Its network units (initially WiFi but with other radios in future) support decentralised micropayments, allowing the node owners to earn tokens and essentially act as their own local ISPs with very little friction or setup cost. While these will obviously need backhaul from normal telcos (fixed and/or mobile), once sufficient density is reached, meshes may reduce the total number of wide-area connections needed. An initial use-case is likely to be in developing countries, where micro-loans and other local (and often informal) sharing-model businesses have grown. The hardware-based model is obviously ambitious, but also means future potential to support multiple radios (imagine a CBRS-type shared spectrum or LPWAN module), and could also potentially host distributed edge-computing or NFV capabilities. There are both opportunities and various complexities and possible pitfalls I can imagine, plus there are alternative options for community/rural connectivity (I'm writing a piece on Facebook's Telco Infra Project & OpenCellular for my STL Partners research stream at present [link]). One aspect that's interesting, but which I'm not able to comment on authoritatively, is the unique blockchain model, based on Proof of Elapsed Time / Velocity, which differs from Bitcoin & Ethereum's Proof of Work. In Ammbr is it linked to a custom silicon processor, with claims of much better power consumption than other approaches. The ICO is upcoming in September.
  • EncryptoTel: (Web page is here and white paper is here. This is very different from the other network-type ICOs, as it's more about (business) voice communications than data access. It is a version of an enterprise cloud PBX / UCaaS platform, with encryption, privacy protections and (anonymous) cryptocurrency payments. It allows both on-net VoIP calls (using standard SIP endpoints or dialler apps) and integration with the public phone network, as well as (in future) interconnecting with various messaging applications. It will offer both monthly subscriptions and a pay-as-you-go model. The white paper references video calls, but it does not appear to offer full-fledged UC functions. The roadmap describes a progressive roadmap of development and deployment, with full commercial launch expected in Summer 2018. The ICO occurred in May 2017.
  • Mysterium (Web page is here and white paper is here) is a distributed VPN and data-encryption platform - essentially a higher-performing, blockchain-based version of Tor. It uses an Ethereum-based token system of micropayments. In its earliest phases it retains some central control, with the intention of removing this further down the roadmap. It will compete with commercial VPN products. Its ICO started at the end of May 2017.
[Note: some white papers get updated, so the URL might change with the version number - check the main websites for the latest versions] 

There are also various other ICOs relating to cloud-computing, storage and other related areas, such as Filecoin and Internxt. Another company called Crypviser (link) is developing a secure messaging app and also references secure voice calls in its white paper, although with few details.

So - will any of these, or future, ICOs lead to commercial, scalable networking or communications platforms? It's too early to tell. While the white papers typically given enough "vision" and a tentative roadmap, it's likely that most or all of these projects will encounter challenges and pitfalls, and may end up pivoting as events unfold (and customers'/users' behaviour develops).

One of the risks is that tokenisation itself may limit the possible business and pricing models - for example, how can any of them offer hybrid centralised/decentralised services, if that's what the market seems to want? Can they support sponsored/free models, or allow more granular differentiation? What happens if they contravene other services' T's & C's? How is customer support provided for decentralised capabilities? It is also unlikely that any such proprietary mechanisms or payment instruments will become globally dominant, so there will need to be paths to standardisation - as well as deal with the beady eyes of regulators if they become successful.


Nevertheless, this is an interestingly different direction-of-travel for telecoms/network blockchain, as it sits separately to the main thrust of work around private/permissioned use-cases I'm seeing from some vendors, various operators, bodies like TMForum etc. I still think that some of the back-office applications for blockchain in the telecoms sector have more short-to-medium term opportunity, but it's possible we could see a break-out here by a new entrant of the type discussed in this post. I'll definitely be keeping a watching eye on all of these. 


Please drop me a message at information AT disruptive-analysis DOT com if you want to discuss this more, or want a telecom/blockchain speaker or analyst for an event or workshop.


Footnote on Ammbr: Close contacts may have noticed I recently added an advisory role to my LinkedIn profile, for an organisation called Ammbr, mentioned above. At present, I'm just working on a consultative basis, but unlike most of my other advisory clients, it's not purely "behind the scenes" with execs in private under-NDA workshops, but has a public aspect to it as well. It's got a genuinely interesting combination of technologies (mesh, blockchain, custom silicon, potentially private cellular etc), some talented people, and while that means a lot of moving parts to fit together, there are some intriguing possibilities I'm glad to be able to help refine and prioritise.

Internally, my role is as a telecoms-sector expert and (to nobody's surprise) a general curmudgeon pointing out any risks, technical or commercial "gotchas", competition/substitution threats and anything that seems like wishful thinking. I should point out that this is a small part of my overall activities, I'm not "endorsing" it as such, and my normal
Disruptive Analysis work on all areas of analysis & futurism is continuing. It's also not going to bias my views on other wireless technologies or business models, many of which are more-developed and which I'm also enthused about (eg private cellular). Drop me a message if you want to discuss this further (or want to discuss other consulting or advisory roles).

Wednesday, February 15, 2017

My presentation at Ofcom: What the year 2030 implies for wireless trends & spectrum policy

On the 8th of February, I gave a presentation at Ofcom (the UK telecom regulator). The event was a day-long discussion of the "Future Wireless World", looking at longer-term trends towards IoT and connectivity (5G, WiFi, mesh, satellite and more), with an implied impact on how spectrum policy needs to be reshaped to meet the changes. It was introduced and moderated by Philip Marnick (Group Director, Spectrum) and also attended by the Ofcom CEO Sharon White. On the same day, Ofcom released its latest thoughts on 5G spectrum (link)

There were about 150 attendees from a range of operators, broadcasters, government bodies, vendors, consultants, Internet and industrial players and internal Ofcom staff. There may be an audio/video recording of the sessions put up online at some point, but I'm not certain of this.

My presentation was a very broad one - I was tasked with imagining how the future economy, consumer and business environment might look like in the year 2030, what disruptions and innovations may occur between now and then, and how that flows back into the use of wireless networks and therefore spectrum. 

In other words, I was wearing my "telcofuturist" hat, where I take generic futurist themes and apply them to the specifics of telecoms and the broader wireless industry. After my presentation, I joined Philip Marnick for a Q&A session with the audience, which was a mix of regulatory, futurist and general analyst-type discussion.

The rest of the event was made up of a series of presentations and panel debates between a broad set of industry luminaries and innovators, including Dino Flore of 3GPP & Qualcomm, Simon Saunders of Google (& formerly the Femto Forum), plus others from O3B, Ericsson, Veniam, BT/EE, Vodafone, Silver Spring and others.
There was a really interesting session on mesh networks later in the day, which I also think has a lot of potential. It was a really refreshing change from some of the usual sponsor-driven snorefests, although there was clearly a strong "lobbying" flavour to some of the questions, with people taking advantage of access to the regulator in an open forum.

One thing that struck me about both this event, and another event I attended recently at Tech-UK's Spectrum Policy Forum (link) is a growing frustration in the regularory community. Some people now view spectrum purely as a "mobile" thing, without simultaneously mentioning broadcast, government, WiFi, LPWAN, industrial, satellite, fixed-access and all the other users of the airwaves.

The mobile industry tends to be very good at pitching for more and more slices of spectrum, ideally provided on an exclusive basis with long licence terms (in exchange for quite a lot of cash in terms of fees, to be fair). It has a far bigger and more cohesive lobbying and publicity engine than the broad set of other spectrum stakeholders.



My own view - and, it seems, many regulators' - is that given the finite amount of spectrum, there is ever less rationale for exclusivity. Various forms of sharing and private networks are rising up the agenda. My recent piece on Industrial IoT and sharing [link] has garnered a lot of good feedback, while the National Infrastructure Commission's Dec'16 report [link] recommended that "Government and Ofcom should review how unlicensed, lightly licensed spectrum, spectrum sharing and similar approaches can be utilised for higher frequencies to maximise access to the radio spectrum".

In other words, spectrum-sharing - of various types - is moving up the regulatory agenda very fast in the UK. I think onsite industrial IoT coverage, via private cellular or licenced-band WiFi deployments, is the easiest to conceptualise and "sell", but there are plenty of other angles too.

But as well as the challenges of IIoT, I covered a lot of other topics in my presentation (slides are embedded below the list - apologies that the bullets aren't in the same sequence):
  • The impact of AI will be felt on both network "supply" side (eg more efficiently-optimised networks, churn management etc) and "demand" (smarter use of wireless connectivity, least-cost routing and so forth). I wrote a post on this a while back (link)
  • Whether the emphasis on mobile uses of spectrum, and the 3GPP/GSMA "national MNO" view of the world could lead to a "monoculture" of cellular connectivity. As in agriculture, the superficial efficiency/yield needs to be considered in the context of risks. Might there be long-term benefits in "network diversity", and should regulators look to protect it, the same way environmental rules protect biodiversity?
  • On a similar environmental theme, I considered habitats that are primarily "mono-platform" and fragile to external events (eg coral reefs) vs. "multi-platform" ecosystems which are more resilient (eg rainforests). Obviously this doesn't translate precisely to wireless networks, but the metaphor seems apt. I'm not a biologist, but a quick word with someone who does study ecosystems afterwards suggested my analogy is worth further exploration.
  • "Arbitrage Everywhere": future networks - and by extension both spectrum and telecom competition rules - should anticipate devices and applications using multiple connections / service providers, and picking and choosing/bonding connectivity from several options. This is already seen in the fixed world for enterprise with SD-WAN, and should be expected in wireless too. This means that "partial competition" (eg from WiFi, LPWAN, satellite, private cellular) should be considered as well as like-for-like rival infrastructure from other national MNOs.
  • Redefining the nature of a "service" - what do we actually mean, when we frame our regulation of "service providers"? Many more organisations are offering connectivity services, while many other models of delivering a "capability" are emerging. WiFi can be a service, owned by a venue, given away for free, provided as an amenity, self-provisioned by a user and so forth. ITU's definition of a service ("a set of functions offered to a user by an organisation") seems to be too narrow given the rise of developers, embedded connectivity in IoT, private networks and more.
  • I discussed the relative timing of various industry trends - and the fact that various look like swinging "pendulums". For instance we see a back-and-forth between centralised vs. distributed control, standards vs. proprietary technologies, local vs. national vs. global and so on. I noted that the timing of the various pendulums' swings are not all in sync - and therefore the actual outcome for the wireless sector is really complex to predict. Various external trends (eg open source, Moore's Law, AI, geopolitics, specific companies) can act as weights on the pendulums.
  • I noted that many different and new organisations may own/operate/embed wireless connectivity in future. Aircraft engine manufacturers use satellite telemetry and download sensor data via WiFi to optimise their analytics for selling "power by the hour". IoT platforms & MVNOs for specific sectors are springing up (eg Cubic Telecom for automotive). Theoretically, Elon Musk could use SpaceX to launch his own satellites - and provide vertically-integrated connectivity to Tesla cars. Google has numerous wireless initiatives, from Fi to WiFi to white spaces to its Loon balloon project. The Governor of California has suggested launching the state's own earth-sensing satellites, if the current administration cuts federal funding for environmental monitoring. Then there are public-safety LTE networks, WiFi everywhere, new mesh concepts, private LoRa deployments and so on.
  • In the Q&A, I also discussed 5G bands, NFV, network-slicing and more. I noted that 5G is being driven initially by fixed-access and 28GHz in the US & S Korea, not the three "mainstream" uses of critical IoT, ultra-mobile broadband and massive IoT. This is outside the "official" bands being pushed by Ofcom as "pioneer" options, and slowly being explored internationally for the ITU WRC event in 3 years' time. This was explored in another post of mine (link). I also expressed doubts that NFV-led network-slicing will deliver all the agility required for creating vertical-specific networks - even if it allows "super-MVNOs", will the host network provide enough fine-grained control and liability-bearing SLAs?


Overall, my session seemed to be very well-received. Hopefully I've prodded some parts of the industry. I'd like to see a wider recognition of the changes to some of our fundamental assumptions that will occur over the next decade and beyond. 

A key point is that 5G, delivered by traditional MNOs as a subscription service, is exciting and important - but it must not be allowed to totally dominate discussions around spectrum. Governments and regulators must push for "network diversity" of technologies, stakeholders and business/operational models - including private networks for businesses. Short-term focus on "efficiency" of a monoculture approach may mask wider ecosystem-level risks. 

A key theme is the need for flexibility and agility in wireless networks and related regulation - many of the more radical changes will occur at timespans of 1-5 years, which is much shorter than the investment and planning horizon for a lot of the industry. Whether we need more malleable licences, better secondary marketplaces for spectrum, new forms of sharing (eg using blockchain as a basis for a distributed database of allocations), or a rethink on how competition is measured, there are plenty of options.

Spectrum policy is several steps away from the actual world of consumer and business needs for wireless networks. But it's for that reason it's worth thinking deeply, about the long chain of implications of seemingly small decisions or baked-in business models that are created now.

If you'd like to have a similar presentation and discussion at your own event, or at a private workshop, please contact me via information AT disruptive-analysis dot com