Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label politics. Show all posts
Showing posts with label politics. Show all posts

Thursday, June 29, 2023

5G data traffic growth - the devil (FWA) is in the detail

This blog combines two separate, linked LinkedIn articles published in June 2023 on consecutive days. The original posts and comment threads are here and here.

Measuring #mobile data traffic is important for operators, vendors, and policymakers.

As I've said before, we should use *good* #metrics to measure the #telecoms industry, rather than just *easy* metrics. This post is an example of what I mean.

Yesterday, Ericsson released its latest Mobility Report. It's always an interesting trove of statistics on mobile subscribers, networks and usage, with extra topical articles, sometimes written by customers or guests.

While obviously it's very oriented to cellular technologies and has an optimistic pro-3GPP stance, it has a long pedigree and a lot of work goes into it. It's partly informed by private stats from Ericsson's real-world, in-service networks run by MNO customers.

This edition includes extra detail, such as breaking out fixed-wireless access & separating video traffic into VoD #streaming (eg Netflix) vs. social media like TikTok and YouTube.

It had plenty of golden "information nuggets". For instance, traffic density can be 500-1000x higher in dense urban locations than sparse rural areas. I'll come back to that another time.

Global mobile data grew 36% from Q1'22 to Q1'23. The full model online predicts 31% growth in CY2023, falling to just 15% in 2028, despite adding in AR/VR applications towards the end of the decade. That's a fairly rapid s-curve flattening.

For Europe, MBB data growth is predicted at 29% in 2023, falling to only 12% in 2028. That's a *really* important one for all sorts of reasons, and is considerably lower than many other forecasts.

But what really caught my eye was this "#FWA data traffic represented 21% of global mobile data traffic at the end of 2022". Further, it is projected to grow much faster than mobile broadband (MBB) and account for *30%* of total traffic in 2028, mostly #5G. When the famous "5G triangle" of use-cases was developed by ITU, it didn't even mention FWA.

However, the report didn't break out this split by region. So I decided to estimate it myself based on the regional split of FWA subscribers, which was shown in a graphic. I also extended the forecasts out to 2030.

I then added an additional segmentation of my own - an indoor vs outdoor split of MBB data. I've pegged this at 75% indoors, aligning with previous comments from Ericsson and others. Some indoor MBB is served by dedicated in-building wireless systems, and some is outdoor-to-indoor from macro RAN or outdoor small cells.

The result is fascinating. By the 2030, it is possible that over 40% of European 5G data traffic will be from FWA. Just 14% of cellular data will be for outdoor mobile broadband. So what's generating the alleged 5G GDP uplift?

That has massive implications for spectrum policy (eg on #6GHz) and proposed #fairshare traffic fees. It also highlights the broad lack of attention paid to indoor cellular and FWA.

Note: This is a quick, rough estimate, but it's the type of data we need for better decisionmaking. I hope to catalyse others to do similar analysis.

 


A separate second post then looked at the policy aspects of this:

Yesterday's post on mobile data traffic - and contribution from 5G FWA and indoor use - seems to have struck a chord. Some online and offline comments have asked about the policy implications.

There are several conclusions for regulators and telecoms/infrastructure ministries:

- Collect more granular data, or make reasoned estimates, of breakdowns of data traffic in your country & trends over time. As well as #FWA vs #MBB & indoor vs outdoor, there should be a split between rural / urban / dense & ideally between macro #RAN vs outdoor #smallcell vs dedicated indoor system. Break out rail / road transport usage.
- Develop a specific policy (or at least gather data and policy drivers) for FWA & indoor #wireless. That feeds through to many areas including spectrum, competition, consumer protection, #wholesale, rights-of-way / access, #cybersecurity, inclusion, industrial policy, R&D, testbeds and trials etc. Don't treat #mobile as mostly about outdoor or in-vehicle connectivity.
- View demand forecasts of mobile #datatraffic and implied costs for MNO investment / capacity-upgrade through the lens of detailed stats, not headline aggregates. FWA is "discretionary"; operators know it creates 10-20x more traffic per user. In areas with poor fixed #broadband (typically rural) that's potentially good news - but those areas may have spare mobile capacity rather than needing upgrades. Remember 4G-to-5G upgrade CAPEX is needed irrespective of traffic levels. FWA in urban areas likely competes with fibre and is a commercial choice, so complaints about traffic growth are self-serving.
- Indoor & FWA wireless can be more "tech neutral" & "business model neutral" than outdoor mobile access. #WiFi, #satellite and other technologies play more important roles - and may be lower-energy too. Shared / #neutralhost infrastructure is very relevant.
- Think through the impact of detailed data on #spectrum requirements and bands. In particular, the FWA/MBB & indoor splits are yet more evidence that the need for #6GHz for #5G has been hugely overstated. In particular, because FWA is "deterministic" (ie it doesn't move around or cluster in crowds) it's much more tolerant of using different bands - or unlicensed spectrum. Meanwhile indoor MBB can be delivered with low-band macro 5G, dedicated in-building systems (perhaps mmWave), or offloaded to WiFi. Using midband 5G and MIMO to "blast through walls" is not ideal use of either spectrum or energy.
- View 5G traffic data/forecasts used in so-called #fairshare or #costrecovery debates with skepticism. Check if discretionary FWA is inflating the figures. Question any GDP impact claims. Consider how much RAN investment is actually serving indoor users, maybe inefficiently. And be aware that home FWA traffic skews towards TVs and VoD #streaming (Netflix, Prime etc) rather than smartphone- or upload-centric social #video like TikTok & FB/IG.

Telecoms regulation needs good input data, not convenient or dramatic headline stats.

 

Saturday, June 24, 2023

UK FTTP: Consolidation and driving uptake

This post originally appeared on June 16 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

Last week I attended the ISPA UK Business Models event, primarily about #FTTP build & adoption.

Two themes dominated:

- Consolidation patterns. The UK has >150 ISPs building #FTTX networks, with a patchwork mix of small/large, urban/rural & vertical/wholesale-only. As interest rates rise & consumer spending is inflation-limited, not all can stay viable.
- How can uptake be accelerated? While many homes are "passed" by fibre, comparatively few are actually signing up for FTTP access services. The lack of revenue for new #AltNets exacerbates the first issue.

Not discussed: data traffic volumes or so-called #fairshare. All the investment is going into initial builds, not capacity upgrades. Streaming and >500GB/mo is actually good news, not a cause for lobbyist handwringing.

The consolidation pathway is complex. There are 3 elements:

- Distress: companies running out of cash, unable to raise fresh capital, and selling assets or the whole business to deeper-pocketed consolidators willing to take a long view of the market.
- Proximity: Mergers or perhaps wholesale/sharing deals between geographic neighbouring ISPs, for scale efficiencies.
- Strategic: larger "mega-mergers" perhaps between wholesalers and integrated telcos, or between B2B and B2C specialists.

There are plenty of challenges. M&A means blending FTTP providers with different vendors, maybe different network engineering qualities, different back-office systems (perhaps proprietary) etc. There may be significant integration costs and practical headaches. Another issue to resolve is competing "overbuilt" fibre grids in urban areas, especially as OpenReach gets to more locations and offers cheap "Equinox2" wholesale.

The uptake question is also thorny. A few speakers pointed out that the UK's FTTC / VDSL broadband mostly proved itself "good enough" during the pandemic, so convincing people they need FTTP or gigabit speeds is a tough sell, especially given cost-of-living issues.

Unless they currently have really terrible connectivity, few people really want to take a day off work to wait for an engineer, risk a day or two without Internet if the switch doesn't work straight away, or pay more and sign up for a new longterm contract.

For some, futureproofing can wait until the future, it seems.

I can think of a number of ways that uptake could be incentivised:

- Trumpet fibre's uses, reliability & maybe impact on property values
- Subsidise an overlap of the old service with the new FTTP, so customers' old connection wouldn't be switched off before it was fully live
- Offer funding to connect homes that are "passed" as long as the connection is fully open-access / wholesale-ready
- Measure, monitor and incentivise B2B use of fibre as well as residential (retail, schools, small offices, home-workers etc)
- Better mapping to find and deal with "exceptions"

All would be enhanced by a consistent view (or scenarios) for the UK #fibre "end state". At the moment that is too amorphous.

Friday, June 23, 2023

Connectivity on trains is hard - but both Wi-Fi and cellular need to be provided for passengers

This post originally appeared on May 24 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

 There have been recent headlines about the possible ending of on-train passenger #WiFi services in the UK. It is deeply controversial.

Apparently the Department for Transport (DfT), United Kingdom has insisted rail WiFi must be "justified financially". It's unclear if that means by extra ticket sales, higher customer satisfaction, or the use of WiFi for #train operational functions like cameras and wireless payment terminals.

I hope it's not referring to so-called "monetisation" by customers paying for WiFi, or being served adverts. On trains, WiFi is a basic amenity, like toilets or power sockets.

That said, train WiFi in the UK is often problematic. It uses clunky captive portals, and often old access points & slow/patchy 4G backhaul. It often fails to work well, or at all. It sometimes blocks video or VPNs. By contrast, in-station WiFi is run separately - and often much better.

Public cellular coverage on the rail network is also poor. Many rail lines run through cuttings and tunnels with limited room for trackside infrastructure & poor lines-of-sight to cell towers. The recent Department for Science, Innovation and Technology Wireless Infrastructure Strategy highlighted poor #railway #wireless coverage & pushed for regular monitoring and access to trackside fibre.
 
What should DfT, DSIT, Network Rail, Train Operating Companies and the future restructured Great British Railways Transition Team (GBRTT) do?
 
- Recognise both cellular & WiFi are essential for passengers, especially on long-distance trains where laptops are common
- Understand that cellular - especially #5G - has problems with signals reaching inside train carriages
- Don't underestimate forecasts for future data use. Add in uplink as well as downlink, and think about latency. Trains may need 1-5 Gbps in the medium term, via a mix of cellular & WiFi.
- Ensure on-train WiFi is easy to use & easily-upgraded. No captive portals, no “monetisation” with ads/data capture & a clear roadmap for regular upgrades. No blocking of any apps, especially VPNs and video. Apply Net Neutrality rules.
- Federation or roaming between on-train & station WiFi systems, extending to smart cities & metro bus/train/tram WiFi over time
- Easier access for MNOs / #neutralhosts to build trackside or near-track infrastructure & use gantries & fibre assets
- Decouple passenger connectivity needs from future critical #FRMCS deployment. They have different timing/cadence & investment cases
- Look at trackside 5G neutral host networks delivered with “excess” spectrum from any future 4-3 merger of MNOs
- Insist on-train gateways are modular & can use a dynamic mix of public 5G, trackside wireless & eventually satellite in remote areas. Ensure they are easily upgradeable without trains being taken out of service
- Upgrade on-train signal repeaters & look at window-etching for better outdoor-to-indoor performance

Note: I wrote this on WiFi on a train back to London from this week’s Wi-Fi NOW conference.


 

Monday, June 19, 2023

CAPEX in telecoms - beware of headline numbers

This post originally appeared on June 12 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

CAPEX numbers are important in #telecoms. But they're also often collected and analysed in a haphazard fashion, or sometimes twisted and misinterpreted. There are examples that wrongly imply casual links or are carefully selected to drive specific policy choices.

- Telco execs watch CAPEX stats as they're important elements of cashflow & also signify key strategies and technology transitions
- Vendors watch #CAPEX stats to understand demand for new products
- Investors watch CAPEX as inputs to their valuation models, and as a barometer for company/industry health and prospects
- Policymakers watch CAPEX as it gets captured in "investment" statistics, and as an indicator for potential regulatory changes (or as a metric of success of previous policies)

Various ratios are commonplace, for both companies and the industry:
- CAPEX vs. revenues
- CAPEX vs. EBITDA
- CAPEX of telecoms vs. tech/hyperscalers
- CAPEX vs. R&D spending
- Fixed vs. Mobile CAPEX
... and so on

The problem is that "telco CAPEX" is also a very vague and malleable concept. Digging into it reveals many more questions - and problems with the methodologies and conclusions drawn, especially where headline numbers are concerned.

Some of the questions I'm currently looking at include:

- What counts as a "telco"? Are you including towercos, subsea fibre operators, municipalities building networks, MVNOs and many others?
- Are historic CAPEX numbers restated when telcos sell or acquire other businesses, especially tower spin-outs?
- Is it meaningful to compare CAPEX for 10 / 30 / 50 year assets such as #FTTP, which will generate decades of new revenue, with last year's figures?
- How do you separate CAPEX for basic coverage vs. incremental capacity vs. "generational" upgrades to fibre or #5G? A lot of CAPEX occurs even if usage is low
- How do you deal with leasing or other financing models? If CAPEX shifts to OPEX, how is it captured in the stats?
- What happens with "cloudified" networks? Firstly they rely on shared (often 3rd-party) assets, and secondly they are *supposed* to lower costs / investments. But will the lower CAPEX be viewed as a sign of distress, not modernisation?
- Is non-network CAPEX broken out (eg retail sites, central offices, datacentres etc)?
- Is "adjacent capex" included and if so, how?, eg in-building #wireless, #spectrum licenses, software development

I hear many commentators and lobbyists claim "#NetNeutrality led to lower CAPEX!" or "Streaming traffic leads to higher CAPEX!" or "There's an investment gap!". Without detailed data - and an analysis of causality - you have to question the veracity & meaningfulness of such rhetoric.

In summary - CAPEX is indeed important. But in fact it's so important, that headline numbers are often useless or misleading.

Ask for details on segmentation, methodology and definitions - if they aren't available, treat the numbers with deep skepticism.

#FTTX #telcos #regulations #networks #fairshare

Thursday, April 07, 2022

Geopolitics, war & network diversity

This post was originally published on my LinkedIn Newsletter (here). Please sign up, and join the discussion thread there.

Background

I'm increasingly finding myself drawn into discussions of #geopolitics and how it relates to #telecoms. This goes well beyond normal regulatory and policymaking involvement, as it means that rules - and opportunities and risks - are driven by much larger "big picture" strategic global trends, including the war in Ukraine.

As well as predicting strategic shifts, there are also lessons to be learned from events at a local, tactical level which have wider ramifications. Often, there will be trade-offs against normal telecoms preoccupations with revenue growth, theoretical "efficiency" of spectrum or network use, standardisation, competition and consumer welfare.

This is the first of what will probably be a regular set of articles on this broader theme. Here, I'm focusing on the Ukraine war, in the context some of the other geopolitical factors that I think are important. I'm specifically thinking about what they may mean for the types of network technology that are used, deployed and developed in future. This has implications for #5G, #6G, #satellite networks, #WiFi, #FTTX and much more, including the cloud/edge domains that support much of it. 

 



Ukraine and other geopolitical issues

This article especially drills into how the conflict in Ukraine has manifested in terms of telecoms and connectivity, and attempts to extrapolate to some early recommendations for policymakers more broadly.

I'm acutely consicous of the ongoing devastation and hideous war crimes being perpetrated there - I hope this isn't too early to try to analyse the narrow field of networking dispassionately, while conflict still rages.

For context, as well as Ukraine, other geopolitical issues impacting telecoms include:

  • US / West vs. China tensions, from trade wars to broader restrictions on the use of Huawei and other vendors' equipment, as well as sanctions on the export of components.
  • Impact of the pandemic on supply chains, plus the greater strategic and political importance of resilient telecom networks and devices in the past two years.
  • The politics of post-pandemic recovery, industrial strategy and stimulus funds. Does this go to broadband deployment, themes such as Open RAN, national networks, smart cities/infrastructure, satellite networks... or somewhere else?
  • Tensions within the US, and between US and Europe over the role and dominance of "Big Tech". Personal data, monopoly behaviour, censorship or regional sovereignty etc. This mostly doesn't touch networks today, but maybe cloud-native will draw attention.
  • Semiconductor supply-chain challenges and the geopolitical fragility of Taiwan's chip-fabrication sector.
  • How telecoms (and cloud) fits within Net Zero strategies, either as a consumer of energy, or as an enabler of green solutions.
  • Cyber threats from nation-state actors, criminal cartels and terrorist-linked groups - especially aimed at critical infrastructure and health/government/finance systems.

In other words, there's a lot going on. It will impact 5G, 6G development, vendor landscapes, cloud - and also other areas such as spectrum policy and Internet governance.

Network diversity as a focus

I've written and spoken before about the importance of "network diversity" and the dangers of technology monocultures, including over-reliance on particular standards (eg 5G) or particular business models (eg national MNOs) as some sort of universal platform. It is now clear that it is more important than ever.

The analogy I made with agriculture, or ecological biodiversity, is proving to be robust.

(Previous work includes this article from 2020 about private enterprise networks, or my 2017 presentation keynote on future disruptions, at Ofcom's spectrum conference. (The blue/yellow image of wheat fields, repeated here in this post, was chosen long before it became so resonant as the Ukrainian flag). I've also covered the shift towards Open RAN and telecoms supplier diversification – including a long report I submitted to the UK Government's Diversification Task Force last year - see this post and download the report).

A key takeout from my Open RAN report was that demand diversity is as important as creating more supply choices in a given product domain. Having many classes of network operator and owner – for instance national MNOs, enterprise private 4G/5G, towercos, industrial MNOs and neutral hosts – tends to pull through multiple options for supply in terms of both vendor diversity and technology diversity. They have different requirements, different investment criteria and different operational models.

In Ukraine, the "demands" for connectivity are arising from an even more broad set of sources, including improvised communications for refugees, drones and military personnel.

The war in Ukraine & telecoms

There have been numerous articles published which highlight the surprising resilience and importance of Ukrainian telecoms during the war so far. Bringing together and synthesising multiple sources, this has highlighted a number of important issues around network connectivity:

  • The original “survivability” concept of IP networks seems to have been demonstrated convincingly. Whether used for ISPs’ Internet access, or internal backhaul and transport for public fixed and mobile networks, the ability for diverse and resilient routing paths seems to have mostly been successful.
  • Public national mobile networks - mostly 4G in Ukraine's case - have proven essential in many ways, whether that has been for reporting information about enemy combatants' locations and activities, obtaining advice from government authorities, or dealing with the evacuation as refugees. (I'm not sure if subway stations used as shelters have underground cellular coverage, or if there is WiFi). Authorities also seem to have had success in getting citizens to self-censor, to avoid disclosing sensitive details to their enemies.
  • Reportedly the Russian forces haven't generally targeted telecoms infrastructure on a widescale basis. This was partly because they have been using commerical mobile networks themselves. However, because roaming was disabled, Russian military use of their encrypted handsets and SIMs on public 3G/4G networks seems to have failed. Two articles here and here give good insight, and also suggests there may be network surveillance backdoors which Russia may have exploited. There have also been reports of stingrays ("fake" base stations used for interception of calls / identity) being deployed. It also appears that some towns and cities - notably the destroyed city of Mariupol - have been mostly knocked offline, partly because the electrical grid was attacked first.
  • Ukraine’s competitive telecoms market has probably helped its resilience. There is a highly fragmented fixed ISP landscape, with very inexpensive connections. There are over a dozen public peering-points across the country. There are three main MNOs, with many users having SIMs from 2+ operators. (This is a good overview article - https://ukraineworld.org/articles/ukraine-explained/key-facts-about-ukraines-telecom-industry). It seems they have enabled some form of national roaming to allow subscribers to attach to each others' networks.
  • WiFi hotspots (likely with mobile backhaul) have been used by NGOs evacuating refugees by buses.
  • Although it is still only being used at a small scale, the LEO satellite terminals from SpaceX’s StarLink seem to be an important contributor to connectivity – not least as a backup option. Realistically, satellite isn’t appropriate for millions of individual homes – and especially not personal vehicles and smartphones – but is an important part of the overall network-diversity landscape. Various commentators have suggested it is useful as a backup for critical infrastructure connectivity, as well as for mobile units such as special forces.
  • Another satellite broadband provider, Viasat, apparently suffered a cyberattack at the start of the war (link here), which knocked various modem users offline (or even "bricked" the devies), reportedly including Ukrainian government organisations. Investigations haven't officially named Russia, but a coincidence seems improbable. This attack also impacted users outside Ukraine.
  • Various peer-to-peer apps using Bluetooth or WiFi allow direct connections between phones, even if wide area connections are down (see link)
  • There have been some concerning reports about the impact of GPS jammers on the operation of cellular networks, which may use it as a source of “timing synchronisation” to operate properly, especially for TDD radio bands. While this has long been a risk for individual cell-sites from low-power transmitters, the use of deliberate electronic warfare tools could potentially point to broader vulnerabilities in future.
  • There has been wide use of commercial drones like the DJI Mavic-3 for surveillance (video and thermal imaging), or modified to deliver improvised weaponry. These use WiFi to connect to controllers on the ground, as well as a proprietary video transmission protocols (called O3+) which apparently has range of up to 15km using unlicensed spectrum. Some of the "Aerorozvidka" units reportedly then use StarLink terminals to connect back to command sites to coordinate artillery attacks (link).

In short, it seems that Ukraine has been well served by having lots of connectivity options - probably including some additional military systems that aren't widely discussed. It has benefited from multiple fixed, cellular and satellite networks, with potential for interconnect, plus inventive "quick fixes" after failures and collaboration between providers. It is exploiting licensed and unlicensed spectrum, with cellular, Wi-Fi and other technologies.

In other words, network diversity is working properly. There appears to be no single point of failure, despite deliberate attacks by invading forces and hackers. Connectivity is far from perfect, but it has held up remarkably well. Perhaps the full range of electronic warfare options hasn't been used - but given the geographical size of Ukraine and the inability of Russia forces to maintain supply-lines to distant units, that is also unsurprising.

Another set of issues that I haven't really examined are around connectivity within sanctions-hit Russia. Maybe it will have to develop more local network equipment manufacturers - if they can get the necessary silicon and other components. It probably will not wish to over-rely on Huawei & ZTE any more than some Western countries have been happy with Nokia and Ericsson as primary options. More problematic may be fixed-Internet routers, servers, WiFi APs and other Western-dominated products. I can't say I'm sympathetic, and I certainly don't want to offer suggestions. Let's see what happens.

Recommendations for policymakers, industry bodies and regulators

So what are the implications of all this? Hopefully, few other countries face a similar invasion by a large and hostile army. But preparedness is wise, especially for countries with unfriendly neighbours and territorial disputes. And even for everywhere else, the risks of cyberattacks, terrorism, natural disasters - or even just software bugs or human error - are still significant.

I should stress that I'm not a cybersecurity or critical infrastructure specialist. But I can read across from other trends I'm seeing in telecoms, and in particular I'm doing a lot of work on "path dependency" where small, innocent-seeming actions end up having long-term strategic impacts and can lock-in technology trajectories.

My initial set of considerations and recommendations:

  • As a general principle, divergence in technology should be considered at least as positively than convergence. It maintains optionality, fosters innovation and reduces single-point-of-failure risks.
  • National networks and telcos (fixed and mobile) are essential - but cannot do everything. They also need to cooperate during emergencies - a spirit of collaboration which seems to have worked well during the pandemic in many countries.
  • Normal ideas about cyber-resilience and security may not extend to the impact of full-scale military electronic warfare units, as well as more "typical" online hacking and malware attacks.
  • Having separate "air-gapped" networks available makes sense not just for critical communications (military, utilities etc) but for more general use. It isn't inefficient - it's insurance. There may be implications here for network-sharing in some instances.
  • Thought needs to be given to emergency fallbacks and improvised work-arounds, for instance in the event of mass power outages or sabotage. This is particularly important for software/cloud-based networks, which may be less "fixable" in the field. Can a 5G network be "bodged"? (that's "MacGyvred" to my US friends)? As a sidenote - how have electric vehicles fared in Ukraine?
  • Unlicensed spectrum and "permissionless communications" is hugely important during emergency situations. Yes, it doesn't have control or lawful intercept. But that's entirely acceptable in extreme circumstances.
  • Linkages between technologies, access networks and control/identity planes should generally be via gateways that can be closed, controlled or removed if necessary. If one is attacked, the rest should be firewalled off from it. For the same reason "seamless" should be a red-flag word for cross-tech / cross-network roaming. Seams are important. They offer control and the ability to partition if necessary. "Frictionless" is OK, as long as friction can be re-imposed if needed.
  • Governments should be extremely cautious of telcos extending 3GPP control mechanisms – especially the core network and slicing – to fixed broadband infrastructure. Fixed broadband is absolutely critical, and complex software dependencies may trade off fine-grained control vs. resilience - and offer additional threat surfaces.
  • Democratising and improving satellite communications looks like an ever more wise move, for all sorts of reasons. It's not a panacea, but it's certainly "air-gapped" as above. 3GPP-based "non-terrestrial" networks, eg based on drones or balloons, also has potential - but will ideally be able to work independently of terrestrial networks if needed.
  • I haven't heard much about LPWAN and LoRa-type networks, but I can imagine that being useful in emergency situations too.
  • Sanctions, trade wars and supply-chain issues are highly unpredictable in terms of intended and unintended consequences. Technology diversity helps mitigate this, alongside supplier diversity in any one network domain.
  • Spectrum policy should enable enough scale economies to ensure good supply of products (and viability of providers), but not *so* much scale that any one option drives out alternatives.
  • The role and impact of international bodies like ITU, GSMA and 3GPP needs careful scrutiny. We are likely to see them become even more political in future. If necessary, there may have to be separate "non-authoritarian" and "authoritarian" versions of some standards (and spectrum policies). De-coupling and de-layering technologies' interdependency - especially radio and core networks - could isolate "disagreements" in certain layers, without undermining the whole international collaboration.
  • There should be a rudimentary basic minimum level of connectivity that uses "old" products and standards. Maybe we need to keep a small slice of 900MHz spectrum alive for generator-powered GSM cells and a box of cheap phones in bunkers - essentially a future variant of Ham Radio.

So to wrap up, I'm ever more convinced that Network Diversity is essential. Not only does it foster innovation, and limit oligopoly risk, but it also enables more options in tragic circumstances. We should also consider the potential risks of too much sophistication and pursuit of effiency and performance at all costs. What happens when things break (or get deliberately broken)?

In the meantime, I'm hoping for a quick resolution to this awful war. Slava Ukraini!

Sidenote: I am currently researching the areas of “technology lock-in” and “path dependence”. In particular, I have been investigating the various mechanisms by which lock-in occurs and strategies for spotting its incipience, or breaking out of it. Please get in touch with me, if this is an area of interest for you.

Sunday, December 06, 2020

10 Principles for Telecoms Vendor Diversification in the UK & Beyond

This was originally published as one of my newsletter articles on LinkedIn. Click here for discussion and commentary & to subscribe. 

 Introduction

The UK is currently a hive of activity for government and regulatory involvement in telecoms. I can’t remember a time when so much emphasis has been put on my domain – from election commitments on gigabit broadband, to concerns over “high risk vendors” (HRVs) – notably Huawei.

This week has seen further progress through Parliament of the Telecom Security Bill (link) which makes telcos face legislation on cybersecurity and HRVs. There has also been the linked publication of the 5G Supply Chain Diversification Strategy (link), which ties the removal of Huawei gear with the government’s intentions to expand operators’ choice of other vendors.

I’m going to be spending considerably more time on the policy aspects of telecoms in coming months – not just my normal areas like spectrum, but more broadly the intersection with geopolitics, technology evolution and industrial strategy, competition and trade.

This article focuses on the diversification aspects - my thoughts on the published strategy, plus what I’d like to see in recommendations from the Task Force and policies from government in 2021. It’s a follow-on from my recent post on interoperability. Note: I’m not revisiting the HRV or Huawei issue here.  

I should stress that this isn’t just parochial and UK-specific - it has wider ramifications on the global telecom market, and links up with activities in Brussels, Washington and elsewhere, such as the US Open RAN Policy Coalition, and the EU’s cybersecurity “toolbox” and upcoming European Cybersecurity Strategy review.

Disclosure – my advisory clients span a broad range of UK and international organisations, from startups to large vendors, service providers of numerous types, investors and branches of government. I work with companies and organisations that enable closed macro & small-cell networks, Open RAN, Wi-Fi, satellite connectivity and more. As people who know me will attest, my opinions are my own – and attempts to influence them will often backfire, even if made by paying clients. In fact, people pay me because I regularly say things they don’t want to hear. I like saying “no”.

Background

 Even before the pandemic there was huge UK government engagement – and manifesto commitments - on “full fibre”, 5G mobile networks, sponsored testbeds & trials, and even satellite communications with the investment in OneWeb.

A lot of my own focus in recent years has been triggered by the Future Telecom Infrastructure Review in 2018, which kicked off the current regulatory enthusiasm for localised spectrum, enterprise/private cellular and neutral host networks – although other commentators had also advocated this for some time previously (*coughs modestly*).

In the last 6-12 months, there has been a specific focus on “supply chain diversification”, and a desire by policymakers to increase the number of equipment/software vendors in the market for network infrastructure. This isn’t new – the Government published its initial Telecom Supply Chain Review in mid-2019 – but it has lately taken on greater urgency.

The largest catalyst has been the recent action taken on Huawei and what that means for supply of equipment in the UK as a result, particularly for national 5G RAN build-outs by the four main UK MNOs BT, Vodafone, Telefonica O2 and 3UK.

The net result of this has been the establishment of the UK Telecoms Diversification Task Force as an advisory group (link), aligned with an internal project to develop a strategy and policy for broadening the vendor base, being run by DCMS (Department of Digital, Culture Media & Sport).

The new strategy document highlights what it sees as a duopoly of Nokia and Ericsson, especially for macro RAN gear, and suggests that if that continues it implies a risk to future resilience of the supply-chain. During the various Science & Technology committee hearings this year, there has been input from vendors, operators, security officials, task force members and others.

The discussion has largely been 5G-dominated, although the strategy document also mentions fixed-infrastructure diversification (subject to ongoing consultation and review). Many of the parliamentarians seem to think 5G is something special, and have bought into the “unicorn” visions of GDP uplift and “ubiquity”. (My regular readers know that 5G is “just another G” – an important upgrade, but not something which will change the world).

The strategy proposes three areas of action:

  • “Supporting incumbent suppliers” (Nokia and Ericsson) as major vendors, but suggests various approaches towards nudging them to greater levels of openness.
  • “Attracting new suppliers into the UK market” – this essentially means working out ways to get Samsung, NEC & Fujitsu more involved, as well as others. The parliamentary debate’s speakers also name-checked Mavenir, Parallel Wireless, Rakuten’s platform business and others.
  • “Accelerating open-interface solutions and deployment” – which refers more to the realm of industrial policy around Open RAN, and components such as semiconductors.

As you might imagine, I’ve got some fairly trenchant opinions on much of this.

Is the market that concentrated?

Clearly, the UK MNOs are today almost entirely dependent on Huawei, Nokia and Ericsson for their macro RAN deployments, although Samsung has previously been present in the 3UK’s 4G network, and Vodafone has recently started deploying gear from Mavenir in its Open RAN deployment.

However, some countries such as the US and Japan have maintained a greater diversity in macro RAN supply, despite a lack of Huawei gear - although there are some differences compared to the UK. Continued support of older 2G/3G services currently relying on combined “single RAN” infrastructures is a valid concern – and the Diversification report suggests it might be possible to sunset or improve interoperability there. The Samsung presentation and letter to the committee also had some suggestions about this (link).

I think there’s perhaps also a link to the historical “3GPP monoculture” in UK/Europe. Other regions had a mix of GSM, CDMA and local alternatives, which fostered greater supply fragmentation originally, which endured over time as the "single RAN" approach wasn't as much of an obvious win (or lock-in).

It is worth noting that there is already good diversity for private cellular networks and specific mobile products such as 4G/5G cores, indoor wireless and other niches such as fixed-wireless access. Many alternative suppliers are gaining traction first in rural and other “secondary” areas, rather than dense urban macro locations.

One aspect the government hasn’t appeared to consider is how much of the anticipated 5G “upside” (whether you believe the $billions GDP numbers or not) is conveniently located in these very contexts which have greater levels of supply diversity. Many of the expected new 5G applications are indoors (in factories, hospitals etc), or in sectors such as agriculture.

Another set of “advanced connectivity” applications have alternative technology options, especially over the 3-5 years it will take 5G to mature. WiFi 6/6E/7, LoRa, 60GHz FWA, new satellite constellations and proprietary platforms like Amazon Sidewalk all offer alternatives to 5G. Yet I still hear people talking about 5G for low-latency AR/VR in peoples’ homes when it’s obvious that 90%+ of that will use Wi-Fi, for multiple reasons.



Reading the report and listening to the debates, there seems to be a certain amount of hindsight here, with regrets that previous governments hadn’t thought through possible consolidation from three big cellular vendors to two, irrespective of which was taken out of the equation or how. Some speakers went back further, to the days of Nortel and Marconi, mourning the loss of greater diversity and national sovereign capability.

There’s also an implied sense of worry that one of the existing incumbents might make a mis-step. It’s notable that the “supporting incumbents” line was absent in January discussions, but was perhaps catalysed by Nokia’s 5G woes earlier in this year. The US Attorney General floating the possibility of a US company acquiring either Nokia or Ericsson, probably raised the stakes even further, even if that suggestion was rapidly shot down at the time.

Other concurrent drivers have related to Brexit, trade deals with Japan (and presumably EU, US and S Korea in future) and the enthusiasm of the current administration for more “industrial policy”. There is interest in state-aid for many areas of technology, ranging from hydrogen-powered aircraft (“Jet Zero”) to biotech to quantum computing, with the aim of improving the UK’s export and trading prospects in new and emerging areas. Telecoms technology needs to be seen in the context of a very expansive vision from artificial meat to nuclear fusion. (Wearing my futurist hat, I heartily approve of this).

Open RAN & disaggregation

Perhaps the least-cohesive part of the strategy document (and some initial actions like the testing and interoperability lab announcements) is the focus on Open RAN as the main saviour of supply-chain diversification. It got a huge amount of airtime in the DCMS report, as well as in politicians’ speeches.

In my view, Open RAN is similar to 5G more generally – important, but getting rather over-hyped. It’s going to be very important in future, but it's not the only game in town. Perhaps it will form the centrepiece of 6G, but for 5G macro – which is being deployed now – it’s going to be secondary, even if some of the Huawei rip/replace by 2027 uses it.

There seems to be quite a lot of disagreement between the MNOs as well – Vodafone is clearly a fan, while BT and 3UK seem more sceptical, with O2 somewhere in the middle.

I’m far from convinced that some of the detailed aspects in the document and annex – going as far as discussing eCPRI interfaces and 7.2 O-RAN splits – are the pivot-points for the overall diversification or resilience story. We don’t have TIP specs for OpenRAN 5G Massive MIMO yet, and may not get there for quite a while.

We’ll see a growing amount of vendor orientation on cloud and open RAN approaches anyway – Samsung, NEC and even Nokia are pursuing it. Ericsson and Huawei are being more diffident, but also seem to recognise that virtualisation is important, even if they’re not breaking open all bits of the RAN. Ericsson's recent Cloud RAN announcement could reasonably be described as "tentative" (link).

While there’s a lot of action and excitement with Rakuten, Dish and other greenfield networks, that doesn’t mean that operators in the UK or elsewhere would necessarily follow suit, even if they could do it tomorrow. It would be nice for the option to be there – but I’m a little concerned that the document asserts that interoperability should always be a default rather than a viable option. (If you haven’t seen my post on interop, have a scan through it here). Different operators have different views - and different legacy infrastructure.

Think of an analogy: should the government also suggest that Airbus planes should interoperate with Boeing avionics? Or, for that matter, how many of the advocates would accept Linux as the “default” OS for their laptops, rather than being able to choose Windows or MacOS if they prefer?

I expect we'll see a growing amount of Open RAN in rural and then perhaps suburban areas - but it's going to be a long time before it's common in existing MNOs' urban cores and high-density macro domains. It's an interesting platform for neutral host networks too, as the NEC trial points out. It is part of the overall “choice architecture” for future networks, but arguably the most interesting domains for advanced connectivity will get more choice / vendor competition from non-5G technology options. The normal 5G macro RAN is more about capacity for smartphone broadband, rather than clever new applications. 



What we should aim to see from future UK Diversification recommendations & policy

What comes next is the Diversification Task Force recommendations, which are expected early in 2021. This will feed into the policies and actions taken by the rest of government – potentially DCMS, although some have suggested aspects should reside with Ofcom, the security agencies or other departments.

As some external input, I thought I’d lay out some my own preferences, principles and what I’d like to see. (I may also submit more formal comments into the consultation process).

  • Clarity of purpose(s): There is a tendency in the report and parliamentary debate to conflate security, supply resilience, competition, innovation, export opportunity and other drivers for telecoms (de)regulation. All are valid concerns and thus represent areas for government to become involved – but any individual recommendations or rules should break out the underlying purpose(s) clearly. Obviously, few politicians or media commentators are experts in telecoms networks arcana – so communications across Westminster and beyond needs to be crisp, and misconceptions and misrepresentations pointed out swiftly. Soundbites and spin always get attention – but must be rooted in technical reality rather than convenience and media-friendliness.
  • Technology neutrality: While there are specific concerns about 5G RAN as it’s a major current focus of investment – and because the intelligence/core functions are increasingly distributed – it’s far from the only important telecom technology, or the only one with a concentrated supplier base. 4G mobile, fibre and fixed-line broadband infrastructure, satellite and assorted other wireless technologies should also be considered as part of diversification. There’s no major UK Wi-Fi player, for instance, which ideally would be rectified. At a component level, we should rightly be considering semiconductors, but also many areas of cloud and software elements involved in ever-more-virtualised telecom networks as well.
  • Business model neutrality: This links to my recent post on interoperability. Governments shouldn’t mandate either proprietary or interoperable interfaces, or vertically-integrated or disaggregated solutions – as long as there’s enough competition. Openness is good – but both highest-performance and lowest-cost options may involve “black boxes”. Open RAN (which in any case needs more careful definitions and comes in multiple variants) has huge promise, but shouldn’t be a political football either. We should be encouraging market forces to operate effectively, in the demand side of telecoms networks. Choice is imperative. (You could say the same about net neutrality: if customers have a choice of 10+ ISPs, it doesn't really matter if one of them sells "Ain'ternet" as long as it's accurately marketed & distinguished from the real thing).
  • Realistic time horizons & paths: Regular readers of my posts may have noticed increasing mentions of “path dependence”. Timelines matter. If there’s an awkward 4-year gap between promise and reality for a given technology, for instance because of lengthy testing and commercialisation, that needs to be recognised upfront. We can’t leap straight to 6G, terabit FTTx or massive LEO satellite constellations, even if the UK might have an edge in specific components. The new rules need to reflect realistic time horizons – including buffers for delays. That’s especially relevant for things like Massive-MIMO 5G radios.
  • Removing obstacles: The UK’s telcos will continue to need large and medium sized international vendors for the foreseeable future. Ericsson and Nokia will obviously remain central, and we should be looking to encourage Samsung, NEC and Fujitsu in 5G – as well as the continued roles for Mavenir, AirSpan, Parallel Wireless, Commscope, Cisco, Juniper, Microsoft and so on. We need to address why, for instance, Samsung is largely absent from UK MNOs’ networks, despite its profile in Korea and the US. If it is about the need for continued support of 2G/3G and other legacy systems (for instance to support eCall), then we should be considering creative solutions for this. I could even imagine a government-sponsored 2G shared network to support M2M and emergency calls, leaving MNOs to focus on 4G/5G differentiation (and reclaiming spectrum).
  • Global vision: While I can understand why government likes the idea of home-grown UK telecom startups thriving, this vision needs to be tempered with reality. It isn’t realistic to expect UK firms to tackle all aspects of network infrastructure at the scale and expertise needed by major telcos. This doesn’t just mean “heavy iron” macro 5G networks, but also future elements such as fibre transport or hyperscale cloud for next-generation platforms. There won’t be a UK (or European) equivalent to AWS or Azure any time soon, nor a Qualcomm equivalent. If domestic self-sufficiency and ownership was a desire, there would have been obvious questions about recent sales of ip.access and Metaswitch. The diversification review should address areas where the UK should expect to collaborate internationally – as well as its contribution to new standards, for instance on 6G development.
  • Supporting cast: For all the various reasons mentioned above – security, supply resilience, export opportunity and so forth – the “leading actors” of MNOs, semiconductor designers and network hardware/software vendors will need other sets of market players to evolve in tandem. Government is right to be creating testing labs, but should also look at training centres for engineers and installers, university courses, systems integrators, infrastructure financiers, insurance providers and many others. It doesn’t have to (and probably shouldn’t) fund all of these, but it can perhaps advocate for their growth, and help remove barriers if they exist. How many indoor mmWave 5G URLLC vertical specialist engineers - or OpenRAN Massive MIMO maintenance teams - are there in the UK? How can we multiply that by 100x?
  • Flexibility to respond to emergent events: Linked to path-dependence is the concept of protecting “optionality”. I can come up with a range of scenarios under which the world might evolve in surprising directions, both technologically and geopolitically. China might reach a different set of compromises with Joe Biden on network vendors, components and trade. Brexit and new UK trade deals may impact supply chains and telecoms demand in unexpected ways – positive or negative. New cybersecurity vulnerabilities might come to light – or new safeguards developed. Any new policies on diversification should aim to enable new vendors and standards, rather than add constraints such as mandating specific interfaces.
  • Industry verticals & new applications: The UK authorities, like others around the world, seem focused on Industry 4.0, automation, IoT and the potential benefits of greater network-intensity in many sectors. This filters through to the idea of private networks, cloud/edge computing and other adjacent domains. It may also feature high on the telecoms diversification agenda. My view is that this should revolve around a general principle of “advanced connectivity”, rather than specifically relating to 5G and its supply chain. Wi-Fi, fibre, LoRa, Bluetooth and even proprietary network solutions have equally-important roles to play, and as before, neutrality of policy is desirable. The government should consider technology substitution between options, as well as vendor choice within one technology.
  • Awareness of energy & CO2 implications: One of the trade-offs of “abstraction layers” and simplicity/flexibility can sometimes be increased power consumption. “Software-defined X” or “Adaptive Y” can involve lower efficiency than something optimised or hardware-based. The UK should be thinking about a future of networks where everything has a CO2 budget – perhaps with cascading carbon taxes built in. Rather than least-cost routing, we might find networks built around lowest-energy optimisation. I didn't see anything about energy or CO2 in the strategy document.

Overall, as a UK-telecom industry analyst and advisor, I see this as both worthwhile and exciting – and I’m keen to participate in one way or another when possible. I’m certainly intending to check up on how the ongoing pronouncements fit with the principles I’ve outlined here. (I'll also be pondering the international ramifications and linkages).

I think the existing Diversification Strategy makes some good points and has clearly taken inputs from numerous well-placed and knowledgeable sources. However, it’s a bit too focused on 5G, Open RAN and macro networks, rather than the broader realm of “Advanced Connectivity”. I'd like to see more technology neutrality and optionality across the board.

It also blends together multiple issues – cybersecurity, resilience, UK industrial policy, competition, technical philosophy and so on – when they sometimes only have tenuous or debatable links. Interoperability is used as a “glue” to stick together the separate parts. I’d rather see broad top-level goals such as “security” and “optionality” and separate self-consistent analysis for each purpose.

As always, I'll aim to respond to the comments and discussion as much as possible. And please get in touch via email or LinkedIn, if you'd like a deeper dive on any of these areas.

#5G #policy #DCMS #wireless #telecoms #regulation #openran #interoperability #wifi #fibre #broadband #IoT #neutralhost #6G


Monday, January 07, 2019

Private cellular networks - why Ofcom's UK spectrum proposals are so innovative

On December 18th 2018, Ofcom announced two consultations about new 5G-oriented spectrum releases (link), and potential new models for spectrum-sharing, rural mobile coverage and related innovation (link). 

I've already commented briefly on Twitter (link) and LinkedIn (link), but it's worth going a bit deeper in a full post on this - particularly on the aspects relating to private networks and spectrum-sharing.

NOTE: this is a long post. Get a coffee now. Or listen to my audio commentary (Part 1 on the background to private mobile networks is here and Part 2 on the Ofcom proposals is here)

My view is that 2019 is a key breakout year for new mobile network ownership and business models - whether that's fully-private enterprise networks, various types of neutral-host, or a revitalised version of MVNO-type wholesale perhaps enriched by network-slicing. 

This trend touches everything from IoT to 5G verticals, to enterprise voice/comms & UCaaS. I'll be covering it in depth. I also discussed it when I presented to Ofcom's technology team in November (see slides halfway down this page), and it's good to see my thinking seems to align fairly closely with theirs.


This was the future, long ago

Localised or private cellular networks - sometimes called Micro-MNOs - are not a new concept.

Twelve years ago, in 2006, the UK telecoms regulator Ofcom made an unusual decision - to auction off a couple of small slices* of 2G mobile spectrum, for use on a low-power, localised basis for a number of innovative service providers or private companies' use. (Link). A few launches occurred, and the Dutch regulator later did something similar, but it didn't really herald a sudden flourishing of private mobile networks. 

*(The slices were known as the DECT Guard Bands, which separated GSM mobile bands from those used for older cordless phones, widely used in homes and businesses)

Numerous practical glitches were blamed, including the costs / complexities involved in deploying small-cells, the need for roaming or MVNO deals for wide-area coverage, and the fact that the spectrum was mostly suitable for voice calls, at a time when the world was moving to mobile data and smartphones. 

Unfortunately, there was also no real international momentum or consensus on the concept, despite Ofcom's hope to set a trend - although it did catalyse a good UK-based cottage industry of small-cell and niche core-network vendors.


Going mainstream: private / virtualised networks for enterprise & verticals

At the start of 2019, the world looks very different. There is a broad consensus that new models of mobile network are needed - whether that is fully-owned private cellular, more-sophisticated MVNOs with their own core networks, or future visions of 5G with privately-run "network slices". 


There's a focus on neutral-host networks for in-building coverage, proponents of wholesale national "open" networks, and a growing number of large non-telecoms enterprises wanting more control and ownership.




It is unrealistic to expect the main national MNOs to be able to pay for, deploy, customise, integrate and operate networks for every industry vertical, indoor location or remote area. They have constraints on capital, personnel, management resource, specialised knowledge and appetite for risk. Other types of network operator or service provider are needed as well.

In a nutshell, there is a wide recognition that "telecoms is too important to just leave up to the telcos".

I've been talking about this for several years now - the rise of unlicensed cellular technologies such as MulteFire or Huawei's eLTE, the growing focus on locally-licensed or shared spectrum for IoT or industry use, and the specific demands of rural, indoor or industrial network coverage and business models.

(As well as non-MNO deployed and owned 4G/5G networks, we will also see a broad range of other ways to deliver private capabilities, including various evolutions of MVNO, mobile SD-WAN and future network-slicing and private cores. But this particular consultation is more about the radio-centric innovations).


Where is the action?

But while there has been a lot of discussion in the UK (including my own presentations to Ofcom, the Spectrum Policy Forum and others), the main sources of action on private (licensed) cellular have been elsewhere. 

In particular, the US push on its CBRS 3-tier model of network sharing - expected to yield the first local service launches in 2019 - and German and Dutch approaches to local-licensed spectrum for industry, have been notable. Unlicensed cellular adoption is (fairly quietly) emerging in Japan and China as well.

Plenty of other trials and regulatory maneouvring has occurred elsewhere too, with encouragaing signs by bodies like ITU, BEREC and assorted national authorities that private/local sharing is becoming important. 

In the UK, various bodies including Ofcom, National Infrastructure Commission, DCMS (the ministry in charge), TechUK/Spectrum Policy Forum (link) and others have referenced the potential for shared/private spectrum - and even invited me to talk about it - but until now, not much concrete has happened.


What use-cases are important here?

From my perspective, the main focus in actual deployment of private LTE has been for industrial IoT and especially the ability for large enterprises to run their own networks for factories, robots, mining facilities, (air)ports or process plants. Some of these also want human communications as well, such as replacing TETRA mobile radio / walkie-talkie units with more sophisticated cellular smartphone-type devices, or links to UCaaS systems.

These are all seen as future 5G opportunities by vendors too. They are also often problematic for many MNOs to cover directly - few are really good at dealing the specialised demands of industrial equipment and installations, and the liability, systems-integration and customisation work required.

Together with big companies like GE and Bosch and BMW, there has been some lobbying action as well. CBRS has had a broader appeal, with numerous other categories showing interest too, from sports stadium owners, to cable operators looking for out-of-home coverage for quadplay, or fixed-wireless extensions.

But I'd say that rural coverage, and more generic in-building use-cases, have had less emphasis by regulators or proponents of Micro-MNO spectrum licensing. That's partly because rural uses are often hard to generate business cases and have fragmentary stakeholders by definition, while in-building represents an awkward mix of rights, responsibilities and willingness-to-pay.  

Yet it is these areas - especially rural - that Ofcom is heavily focused on, partly in response to some UK Government policy priorities, notably around rural broadband coverage.


What has been announced?

There are two separate announcements / consultations:
  • An immediate, specific proposal for 700MHz and 3.6-3.8GHz auctions to have additional coverage conditions added to "normal" national mobile licenses, especially for rural areas. This includes provisions for cheaper license fees for operators that agree to build new infrastructure in under-served rural areas, and cover extra homes in "not-spots" today.
  • A more general consultation on innovation, which focuses on various interesting sharing models for three bands: the 1800MHz DECT guard bands (as discussed above), the 3.8-4.2GHz range and also 10MHz around 2.3GHz.

The first proposal is essentially just a variation of "normal 3.5GHz-band national 5G licenses", similar to the earlier 3.4-3.6GHz tranche which has already been released in the UK. Some were hoping that this would have some sort of sharing option, for instance for neutral-host networks in rural or industrial sectors, but that has been sidelined. 

Unlike Germany, which has just 3 MNOs and a powerful industrial lobby wanting private spectrum, the UK has to squeeze 4 MNOs' 5G needs into this band, with a big chunk already belonging to 3/UK Broadband. So, it has stuck with fairly normal national licenses. Instead, there's some tweaks to incentivise MNOs to build out better rural coverage. This helps address some of the UK government's and voters' loudly voiced complaints, but doesn't really affect this post's core theme of private/novel network types.

It is the second consultation that is the most radical - and the one which could potentially reshape the mobile industry in the UK. There are two central elements to its proposals:
  • Local-licensed spectrum in three "shared" bands, with Ofcom managing authorisations itself, with a fixed pricing structure that is just based on cost of administration, rather than raising large sums for the Treasury. There are proposals for low-power and mid-power deployments, suitable respectively for individual buildings or sparsely-populated rural areas.
  • Secondary re-use of existing national licensed bands. In essence, this means that any existing mobile band could be subject to 3rd-party localised, short-term licensing in areas where there is no existing coverage. This is likely to be hugely controversial, but makes inherent sense - essentially it's a form of "use it or lose it" rule for MNOs. 

Local licensing in shared bands
 
The local licensing idea has numerous potential applications, from industrial sites to neutral-hosts to fixed-wireless access in rural districts. It updates the 1.8GHz 2006 low-power wireless licenses to the new approach, and adds in the new bands in 2.3GHz and 3.8-4.2GHz. 

While I'm sure that some objections will be raised - for example, perhaps around the low-cost aspects of these new licenses - I struggle to find many grounds for substantive disagreement. It is, essentially, a decent pitch for a halfway-house between national licenses and complete WiFi-style unlicensed access. Like CBRS in the US (which is much more complex in many ways) it could drive a lot of innovative network deployments, but at smaller scale, as CBRS is aimed at county-sized areas rather than local areas as small as 50m diameter. 



There are numerous innovations here - and considerable pragmatism too, and plenty of homework that's been done already. The medium-power band, and the rural restrictions for outdoor use, are both definitely interesting angles - and well-designed to ensure that this doesn't allow full national/mobile competition "on the cheap" by aggressive new entrants. The "what if?" consultation sections on "possible unintended consequences" and ways to mitigate  them are especially smart - frankly all governmental policy documents should do something similar.

Ofcom also discusses options for database-driven dynamic spectrum approaches (similar to CBRS, white spaces and others) but thinks that would take too long to develop. It essentially wants a quasi-static authorisation mechanism, but with short enough terms - 3 years - that it can transition to some DSA-type option when it's robust and flexible enough. 

(As an aside, I wonder if the ultimate version is some sort of decentralised blockchain-ish decentralised-database platform for dynamic spectrum, which in theory sounds good, but has not been tried in practice yet. And no, it shouldn't be based on SpectrumCoin cryptocurrency tokens).


Secondary licensing of existing bands

This is the really controversial one.

It basically tells the MNOs that their existing - or future - national licenses don't allow them to "bank" spectrum in places where it's not going to be actively used. If there's no coverage now, or credible mid-term plans for build-out in the future, then (as long as it won't create interference) then other parties can apply to use it instead, as long as Ofcom agrees that there's no risk of interference. 

Unlike the shared-band approach (except for 1800MHz), this means that devices will be available immediately, as they would operate in the same bands that already exist. It would also potentially apply for the new 5G bands, especially 3.4-3.8GHz. 

There's a proposed outline mechanism from Ofcom to verify that suggested parallel licenses should be able to go ahead, and again a fairly low-cost pricing mechanism.



Clearly, this is just a broad outline, and there are a lot of details to consider before this could become a reality. But the general principle is almost "use it or lose it", although more accurately it's "use it, or don't complain if someone else uses it until you're ready".

There are a few possible options that have been suggested in the past for this type of thing - leasing or sub-licencing of spectrum by MNOs, or some form of spectrum trading, for instance. In some countries / places this has worked OK, for example for mines in the Australian Outback running private cellular, that have been able to do a deal with one of the national MNOs. But it's complex to administer, and often the MNOs don't really have incentives or mechanisms to do this at scale. They're not interested in doing site-surveys, or drawing up unique contracts for £1000 a year for a couple of farmhouses or a wind-turbine on a hilltop. Plus, there are complexities about liability with leasing (it's still the original licensee's name on the license).

While there will be costs for Ofcom to manage this process, it thinks they should be reasonable - it's pricing the licenses at £950 for a 3 year period. 

All this is pretty radical. And I expect MNOs and industry bodies to raise blue-murder about this in the consultation. Firstly, they will complain about possible interference, which is valid enough, but can be ruled out in some locations. They'll talk about the internal costs of the acceptance process. And above all, they may talk about "cherry-picking" and perceived competitive distortions.

The most interesting aspect for me is how this changes the calculus for building networks indoors, in offices, factories or public buildings. This could limit the practice of MNOs sometimes insisting that enterprises pay for their own indoor systems, for delivery of the MNOs' network coverage and capacity. It could incentivise operators to focus on indoor coverage, if they want to offer managed services for IoT, for example.

There's a lot of other implications, opportunities and challenges I don't have time to address in this post, but will pick up on, over the next weeks and months. There are technical, regulatory, commercial, practical and political dimensions.

I'm really curious to read the responses to this consultation, and see what comes out of the next round of statements from Ofcom. I'm probably going to submit something myself, as I can see a bunch of questions and complexities. Let me know if you'd like me to brainstorm any of this with you.
 

Spectrum is not enough

One thing is definitely critical for both proposals. The availability of local-licensed spectrum is not enough for innovators and enterprises to build networks. There are many other "moving parts" as well - affordable radio infrastructure such as small-cells, inexpensive (likely cloud-based) core and transport networks, numbering resources, SIMs, billing/operations software, voice and messaging integration, and so on. The consultations cover numbering concerns and MNC (mobile network codes), at least up to a point.

In some cases, roaming deals with national networks will be needed - and may be hard to negotiate, unless regulatory pressure is applied. As I've been discussing recently (including in this report for STL - link) this ties in with a wider requirement for revisiting wholesale mobile business models and regulation.


Conclusions

This is all very exciting, and underscores a central forecast of mine, that mobile network business / ownership models will change a lot in the next few years. We'll see new network owners, wholesalers and tenants - even as normal MNOs consolidate and merge with fixed-lie players.

I'd like to think I've played a small part in this myself. I've advised clients, presented and run many workshops on the topic, including my own public events in May and November 2017 (link), and numerous speeches to regulators, industry groups and policymakers. Industry, rural and in-building users need both more coverage and sometimes more control / ownership of cellular networks in licensed bands. 

There will need to be customisation, systems integration and a wide variety of "special cases" for future cellular. The MNOs are not always willing or able to deliver that, so alternatives are needed. (Most will admit, privately at least, that they cannot cover all verticals and all use-cases for 4G/5G). WiFi works fine for many applications, but in some cases private cellular is more suitable.

We're seeing a variety of new network-sharing and private-spectrum models emerge around the world, and a general view that they are (in some fashion) needed. What's unclear is what is the best approach (or approaches). CBRS, German industrial networks, Dutch localised licenses, or something else. I'd say that Ofcom's various ideas are very powerful - and in the case of the secondary re-use proposal, highly disruptive.

Edit & footnote: rather than "secondary re-use", perhaps a better name for this proposal is "Cellular White-Space", given that it is, in essence, the mobile-spectrum equivalent of the TVWS model.

If you'd like to discuss this with me - or engage me for a presentation or input on strategy or regulatory submissions - please reach out and connect. I'm available via information AT disruptive-analysis DOT com

Also, please subscribe to this blog, follow me on Twitter and LinkedIn - and (new for 2019!) look out for new audio/podcast and YouTube content. 

There are two audio segments that relate to this blog post:
Part 1 covers the general background to private cellular (here)
Part 2 covers the specific Ofcom proposals (here)