Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label Mobile Broadband. Show all posts
Showing posts with label Mobile Broadband. Show all posts

Thursday, June 29, 2023

5G data traffic growth - the devil (FWA) is in the detail

This blog combines two separate, linked LinkedIn articles published in June 2023 on consecutive days. The original posts and comment threads are here and here.

Measuring #mobile data traffic is important for operators, vendors, and policymakers.

As I've said before, we should use *good* #metrics to measure the #telecoms industry, rather than just *easy* metrics. This post is an example of what I mean.

Yesterday, Ericsson released its latest Mobility Report. It's always an interesting trove of statistics on mobile subscribers, networks and usage, with extra topical articles, sometimes written by customers or guests.

While obviously it's very oriented to cellular technologies and has an optimistic pro-3GPP stance, it has a long pedigree and a lot of work goes into it. It's partly informed by private stats from Ericsson's real-world, in-service networks run by MNO customers.

This edition includes extra detail, such as breaking out fixed-wireless access & separating video traffic into VoD #streaming (eg Netflix) vs. social media like TikTok and YouTube.

It had plenty of golden "information nuggets". For instance, traffic density can be 500-1000x higher in dense urban locations than sparse rural areas. I'll come back to that another time.

Global mobile data grew 36% from Q1'22 to Q1'23. The full model online predicts 31% growth in CY2023, falling to just 15% in 2028, despite adding in AR/VR applications towards the end of the decade. That's a fairly rapid s-curve flattening.

For Europe, MBB data growth is predicted at 29% in 2023, falling to only 12% in 2028. That's a *really* important one for all sorts of reasons, and is considerably lower than many other forecasts.

But what really caught my eye was this "#FWA data traffic represented 21% of global mobile data traffic at the end of 2022". Further, it is projected to grow much faster than mobile broadband (MBB) and account for *30%* of total traffic in 2028, mostly #5G. When the famous "5G triangle" of use-cases was developed by ITU, it didn't even mention FWA.

However, the report didn't break out this split by region. So I decided to estimate it myself based on the regional split of FWA subscribers, which was shown in a graphic. I also extended the forecasts out to 2030.

I then added an additional segmentation of my own - an indoor vs outdoor split of MBB data. I've pegged this at 75% indoors, aligning with previous comments from Ericsson and others. Some indoor MBB is served by dedicated in-building wireless systems, and some is outdoor-to-indoor from macro RAN or outdoor small cells.

The result is fascinating. By the 2030, it is possible that over 40% of European 5G data traffic will be from FWA. Just 14% of cellular data will be for outdoor mobile broadband. So what's generating the alleged 5G GDP uplift?

That has massive implications for spectrum policy (eg on #6GHz) and proposed #fairshare traffic fees. It also highlights the broad lack of attention paid to indoor cellular and FWA.

Note: This is a quick, rough estimate, but it's the type of data we need for better decisionmaking. I hope to catalyse others to do similar analysis.

 


A separate second post then looked at the policy aspects of this:

Yesterday's post on mobile data traffic - and contribution from 5G FWA and indoor use - seems to have struck a chord. Some online and offline comments have asked about the policy implications.

There are several conclusions for regulators and telecoms/infrastructure ministries:

- Collect more granular data, or make reasoned estimates, of breakdowns of data traffic in your country & trends over time. As well as #FWA vs #MBB & indoor vs outdoor, there should be a split between rural / urban / dense & ideally between macro #RAN vs outdoor #smallcell vs dedicated indoor system. Break out rail / road transport usage.
- Develop a specific policy (or at least gather data and policy drivers) for FWA & indoor #wireless. That feeds through to many areas including spectrum, competition, consumer protection, #wholesale, rights-of-way / access, #cybersecurity, inclusion, industrial policy, R&D, testbeds and trials etc. Don't treat #mobile as mostly about outdoor or in-vehicle connectivity.
- View demand forecasts of mobile #datatraffic and implied costs for MNO investment / capacity-upgrade through the lens of detailed stats, not headline aggregates. FWA is "discretionary"; operators know it creates 10-20x more traffic per user. In areas with poor fixed #broadband (typically rural) that's potentially good news - but those areas may have spare mobile capacity rather than needing upgrades. Remember 4G-to-5G upgrade CAPEX is needed irrespective of traffic levels. FWA in urban areas likely competes with fibre and is a commercial choice, so complaints about traffic growth are self-serving.
- Indoor & FWA wireless can be more "tech neutral" & "business model neutral" than outdoor mobile access. #WiFi, #satellite and other technologies play more important roles - and may be lower-energy too. Shared / #neutralhost infrastructure is very relevant.
- Think through the impact of detailed data on #spectrum requirements and bands. In particular, the FWA/MBB & indoor splits are yet more evidence that the need for #6GHz for #5G has been hugely overstated. In particular, because FWA is "deterministic" (ie it doesn't move around or cluster in crowds) it's much more tolerant of using different bands - or unlicensed spectrum. Meanwhile indoor MBB can be delivered with low-band macro 5G, dedicated in-building systems (perhaps mmWave), or offloaded to WiFi. Using midband 5G and MIMO to "blast through walls" is not ideal use of either spectrum or energy.
- View 5G traffic data/forecasts used in so-called #fairshare or #costrecovery debates with skepticism. Check if discretionary FWA is inflating the figures. Question any GDP impact claims. Consider how much RAN investment is actually serving indoor users, maybe inefficiently. And be aware that home FWA traffic skews towards TVs and VoD #streaming (Netflix, Prime etc) rather than smartphone- or upload-centric social #video like TikTok & FB/IG.

Telecoms regulation needs good input data, not convenient or dramatic headline stats.

 

Wednesday, September 08, 2021

Drawing flawed conclusions from public misconceptions about wireless

(Cross-posted from my LinkedIn Newsletter - see original + comment thread here)

In the last couple of weeks, I’ve come across several clear examples of general confusion about connectivity and wireless technologies – including among smart and otherwise tech-savvy people.

  • A recent survey came up with the remarkable result that over a million people in the UK think they already have “satellite broadband”. The real number is likely under 100k. But many still associate the telecom brand Sky with its early involvement with satellite TV. (Expect Dish to face the same issue in the US).
  • On a client workshop discussing future devices, a user-interface expert referred to “Wi-Fi towers”, rather than mobile/cellular towers. I've also heard someone talk about "satellite Wi-Fi" when referring to things like LEO constellations.
  • A friend posted a photo of mobile antennas in London, in black enclosures to match the structure they were mounted on. One comment was that they were “definitely 5G” with no explanation why they distinguished them from 4G (or indeed, multi-radio RAN units as I suspect they were). Another confidently asserted they were definitely “boosters”, whatever that means.
  • A fascinating Nokia-produced podcast, with a visionary from Disney, covered a huge amount about AR/VR, branding and new experiences. The only problem was the assertion that this would all depend on 5G – even indoors on the sofa, where we can expect essentially all headsets and most smartphones to be connected to Wi-Fi.
  • Another podcast referenced Mavenir's acquisition of cPaaS provider Telestax, with the farcical suggestion that it tied in with B2B uses of 5G. Instead, it's more about platforms for enterprise messaging and calling. Getting an automated dentist-appointment reminder or automating a call-centre process doesn't depend on 5G (or any other G, or even wireless).
  • I've lost count of the people who think 5G enables 1 millisecond latencies everywhere.

At one level, we can just shrug and say this is just normal. People often fail to grasp distinctions between categories of similar things that are obvious (and important) to experts involved in their production or classification. 

 

Source: https://pixabay.com/users/peterdargatz-5783/

 How many people confuse bulldozers and excavators, a flan vs. a quiche, or even a spider and insect? Yet we don’t pay much attention to the exasperated sighs and teeth-grinding of civil engineers, chefs or arachnologists. We in the industry don’t help much either – how many Wi-Fi SSID access names are called “5G” instead of “5GHz”?

Yet for connectivity, these distinctions do matter in many real ways. They can lead to poor decision-making, flawed regulation, misled investors and wasted effort. In some cases there is real, physical harm too – think about all the crazy conspiracy theories about 5G (especially "60GHz mmWave 5G" - which doesn't even exist yet), or previously Wi-Fi.

Think too about the huge hyping by politicians about 5G – despite many of the use-cases either working perfectly well on older 4G, or in reality more likely to use fibre or Wi-Fi connections. That can feed through to poor policy on spectrum, competition – and as seen in many places recently, vendor diversification rules which ignore the vibrant ecosystem of indoor and private cellular suppliers.

Think too about the ludicrous assertions that LEO satellite constellations like SpaceX’s Starlink could replace normal home broadband or terrestrial mobile, despite the real practicalities meaning endpoint numbers will be 100x fewer, even with optimistic projections.

This all puts a new angle on a common refrain in telecoms “users don’t care what network they’re connected to”. In reality, this could be more accurately rephrased as “users don’t understand what network they're connected to…. although they really should”.

This also applies to the myth of "seamless" interconnection between different technologies, such as Wi-Fi and 5G networks. The border (ie seam) is hugely important. It can change the speed, cost, ownership, security, privacy, predictability of the connection. Not just users, but also application & device developers need to understand this - and if possible, control it. Frictionless can be OK. Seamless is useless, or worse.

What should be our practical steps to deal with this? Realistically, we're not going to get the population to take "Wireless 101" courses, even if we could agree amongst ourselves what to tell them. We're certainly not going to give people a grasp of radio propagation through walls, nor ITU IMT-Advanced definitions and how that relates to "5G".

But on a more mundane level, there are some concrete recommendations we can follow:

  • Use generic terms such as "advanced connectivity" without specifying 5G, Wi-Fi or whatever, wherever possible. At least that's relatively accurate.
  • Ignore any surveys of the general public about wireless technology. Assume that 90% of people won't understand the questions, and the other 10% will lie. Actually, ignore most surveys of the industry as well - most have appallingly biased samples, usually over-represented by people trying to sell things.
  • Don't repost, retweet or otherwise circulate hyped-up articles or comments. If someone claims that $X Trillion will be generated by 5G, ask if they've looked into what the baseline would be for 4G, and what the assumptions and sensitivities are.
  • I'll be bad at this myself, but we should try to gently point out to people they're wrong, rather than either shrug-and-ignore, or ridicule-and-point. If a politician or marketer or broadcaster talks about 5G or Wi-Fi or satellite with clear factual errors, point it out online, or in person.
  • Ask open-ended questions such as "why do you think satellite broadband can really do that?" or "have you considered how that would work indoors?" and see if people have actually given it any real thought.
  • Don't let your boss or your clients get away with these misconceptions, even if you think correcting them could cause a negative reaction. Don't be a yes-person. (If you need to, let me know & I can debunk their claims for you. I'll probably enjoy it too much though....)
  • Do NOT hire clueless "content marketing" people to write gibberish about "Why Tech X will Change the World"
  • Watch out for logical fallacies like "appeal to authority". There's no shortage of very senior and well-known people spouting the type of nonsense I describe here.
  • Run internal training sessions on "myth vs. reality" about wireless and telecoms. Make them fun.

I don't know whether this campaign to improve genuine understanding (and a bit of skepticism of hyperbole) will pay off. But I think it's important to try. Feel free to add other examples or suggestions in the comments! Also, please subscribe to this LinkedIn newsletter & follow @disruptivedean on Twitter.

(And yes, that's an excavator in the image above).

#5G #WiFi #mobile #wireless #satellite #broadband

Wednesday, March 03, 2021

The Worst Metrics in Telecoms

 (This post was initially published as an article on my LinkedIn Newsletter - here - please see that version for comments and discussion)

GDP isn't a particularly good measure of the true health of a country's economy. Most economists and politicians know this.

This isn't a plea for non-financial measures such as "national happiness". It's a numerical issue. GDP is hard to measure, with definitions that vary widely by country. Important aspects of the modern world such as "free" online services and family-provided eldercare aren't really counted properly.

However, people won't abandon GDP, because they like comparable data with a long history. They can plot trends, curves, averages... and don't need to revise spreadsheets and models from the ground up with something new. Other metrics are linked to GDP - R&D intensity, NATO military spending commitments and so on - which would needed to be re-based if a different measure was used. The accounting and political headaches would be huge.

A poor metric often has huge inertia and high switching costs.

Telecoms is no different, like many sub-sectors of the economy. There are many old-fashioned metrics that are really not fit for purpose any more - and even some new ones that are badly-conceived. They often lead to poor regulatory decisions, poor optimisation and investment approaches by service providers, flawed incentives and large tranches of self-congratulatory overhype.

Some of the worst telecoms metrics I see regularly include:

  • Voice traffic measured in minutes of use (or messages counted individually)
  • Cost per bit (or increasingly energy use per bit) for broadband
  • $ per MHz per POP (population) for radio spectrum auctions
  • ARPU
  • CO2 savings "enabled" by telecom services, especially 5G

That's not an exhaustive list by any means. But the point of this article is to make people think twice about commonplace numbers - and ideally think of meaningful metrics rather than easy or convenient ones.

The sections below gives some quick thoughts on why these metrics either won't work in the future - or are simply terrible even now and in the past.

(As an aside, if you ever see numbers - especially forecasts - with too many digits and "spurious accuracy", that an immediate red flag: "The Market for Widgets will be $27.123bn in 2027". It tells you that the source really doesn't understand numbers - and you really shouldn't trust, or base decisions, on someone that mathematically inept)

Minutes and messages

The reason we count phone calls in minutes (rather than, say, conversations or just a monthly access fee) is based on an historical accident. Original human switchboard operators were paid by the hour, so a time-based quantum made the most sense for billing users. And while many phone plans are now either flat-rate, or use per-second rates, many regulations are still framed in the language of "the minute". (Note: some long-distance calls were also based on length of cable used, so "per mile" as well as minute)

This is a ridiculous anachronism. We don't measure or price other audiovisual services this way. You don't pay per-minute for movies or TV, or value podcasts, music or audiobooks on a per-minute basis. Other non-telephony voice communications modes such as push-to-talk, social audio like ClubHouse, or requests to Alexa or Siri aren't time-based.

Ironically, shorter calls are often more valuable to people. There's a fundamental disconnect between price and value.

A one-size-fits-all metric for calls stops telcos and other providers from innovating around context, purpose and new models for voice services. It's hard to charge extra for "enhanced voice" in a dozen different dimensions. They should call on governments to scrap minute-based laws and reporting requirements, and rejig their own internal systems to a model that makes more sense.

Much.

the

same

argument...

.... applies to counting individual messages/SMS as well. It's a meaningless quantum that doesn't align with how people use IMs / DMs / group chats and other similar modalities. It's like counting or charging for documents by the pixel. Threads, sessions or conversations are often more natural units, albeit harder to measure.

Cost per bit

"5G costs less per bit than 4G". "Traffic levels increase faster than revenues!".

Cost-per-bit is an often-used but largely meaningless metric, which drives poor decision-making and incentives, especially in the 5G era of multiple use-cases - and essentially infinite ways to calculate the numbers.

Different bits have very different associated costs. A broad average is very unhelpful for investment decisions. The cost of a “mobile” bit (for an outdoor user in motion, handing off from cell to cell) is very different to an FWA bit delivered to a house’s external fixed antenna, or a wholesale bit used by an MVNO.

Costs can vary massively by spectrum band, to a far greater degree than technology generation - with the cost of the spectrum itself a major component. Convergence and virtualisation means that the same costs (eg core and transport networks) can apply to both fixed and mobile broadband, and 4G/5G/other wireless technologies. Uplink and downlink bits also have different costs - which perhaps should include the cost of the phone and power it uses, not just the network.

The arrival of network slicing (and URLLC) will mean “cost per bit” is an ever-worse metric, as different slices will inherently be more or less "expensive" to create and operate. Same thing with local break-out, delivery of content from a nearby edge-server or numerous other wrinkles.

But in many ways, the "cost" part of cost/bit is perhaps the most easy to analyse, despite the accounting variabilities. Given enough bean-counters and some smarts in the network core/OSS, it would be possible to create some decent numbers at least theoretically.

But the bigger problem is the volume of bits. This is not an independent variable, which flexes up and down just based on user demand and consumption. Faster networks with more instantaneous "headroom" actually create many more bits, as adaptive codecs and other application intelligence means that traffic expands to fill the space available. And pricing strategy can basically dial up or down the number of bits customers used, with minimal impact on costs.

A video application might automatically increase the frame rate, or upgrade from SD to HD, with no user intervention - and very little extra "value". There might be 10x more bits transferred for the same costs (especially if delivered from a local CDN). Application developers might use tools to predict available bandwidth, and change the behaviour of their apps dynamically.

So - if averaged costs are incalculable, and bit-volume is hugely elastic, then cost/bit is meaningless. Ironically, "cost per minute of use" might actually be more relevant here than it is for voice calls. At the very least, cost per bit needs separate calculations for MBB / FWA / URLLC, and by local/national network scale.

(By a similar argument, "energy consumed per bit" is pretty useless too).

Spectrum prices for mobile use

The mobile industry has evolved around several generations of technology, typically provided by MNOs to consumers. Spectrum has typically been auctioned for exclusive use on a national / regional basis, in fixed-sized slices in chunks perhaps 5/10/20MHz wide, with licenses often specifying rules on coverage of population.

For this reason, it's not surprising that a very common metric is "$ per MHz / Pop" - the cost per megahertz, per addressable population in a given area.

Up to a point, this has been pretty reasonable, given that the main use of 2G, 3G and even 4G has been for broad, wide-area coverage for consumers' phones and sometimes homes. It has been useful for investors, telcos, regulators and others to compare the outcomes of auctions.

But for 5G and beyond (actually the 5G era, rather than 5G specifically), this metric is becoming ever less-useful. There are three problems here:

  • Growing focus on smaller areas of licenses: county-sized in CBRS in the US, and site-specific in Germany, UK and Japan for instance, especially for enterprise sites and property developments. This makes comparisons much harder, especially if areas are unclear.
  • Focus of 5G and private 4G on non-consumer applications and uses. Unless the idea of "population" is expanded to include robots, cars, cows and IoT gadgets, the "pop" part of the metric clearly doesn't work. As the resident population of a port or offshore windfarm zone is zero, then a local spectrum license would effectively have an infinite $ / MHz / Pop.
  • Spectrum licenses are increasingly being awarded with extra conditions such as coverage of roads, land-area - or mandates to offer leases or MVNO access. Again, these are not population-driven considerations.

Over the next decade we will see much greater use of mobile spectrum-sharing, new models of pooled ("club") spectrum access, dynamic and database-driven access, indoor-only licenses, secondary-use licenses and leases, and much more.

Taken together, these issues are increasingly rendering $/MHz/Pop a legacy irrelevance in many cases.

ARPU

"Average Revenue Per User" is a longstanding metric used in various parts of telecoms, but especially by MNOs for measuring their success in selling consumers higher-end packages and subcriptions. It has long come under scrutiny for its failings, and various alternatives such as AMPU (M for margin) have emerged, as well as ways to carve out dilutive "user" groups such as low-cost M2M connections. There have also been attempts to distinguish "user" from "SIM" as some people have multiple SIMs, while other SIMs are shared.

At various points in the past it used to "hide" effective loan repayments for subsidised handsets provided "free" in the contract, although that has become less of an issue with newer accounting rules. It also faces complexity in dealing with allocating revenues in converged fixed/mobile plans, family plans, MVNO wholesale contracts and so on.

A similar issue to "cost per bit" is likely to happen to ARPU in the 5G era. Unless revenues and user numbers are broken out more finely, the overall figure is going to be a meaningless amalgam of ordinary post/prepaid smartphone contracts, fixed wireless access, premium "slice" customers and a wide variety of new wholesale deals.

The other issue is that ARPU further locks telcos into the mentality of the "monthly subscription" model. While fixed monthly subs, or "pay as you go top-up" models still dominate in wireless, others are important too, especially in the IoT world. Some devices are sold with connectivity included upfront.

Enterprises buying private cellular networks specifically want to avoid per-month or per-GB "plans" - it's one of the reasons they are looking to create their own dedicated infrastructure. MNOs may need to think in terms of annual fees, systems integration and outsourcing deals, "devices under management" and all sorts of other business models. The same is true if they want to sell "slices" or other blended capabilities - perhaps geared to SLAs or business outcomes.

Lastly - what is a "user" in future? An individual human with a subscription? A family? A home? A group? A device?

ARPU is another metric overdue for obsolescence.

CO2 "enablement" savings

I posted last week about the growing trend of companies and organisations to cite claims that a technology (often 5G or perhaps IoT in general) allows users to "save X tons of CO2 emissions".

You know the sort of thing - "Using augmented reality conferencing on your 5G phone for a meeting avoids the need for a flight & saves 2.3 tons of CO2" or whatever. Even leaving aside the thorny issues of Jevon's Paradox, which means that efficiency tends to expand usage rather than replace it - there's a big problem here:

Double-counting.

There's no attempt at allocating this notional CO2 "saving" between the device(s), the network(s), the app, the cloud platform, the OS & 100 other elements. There's no attempt such as "we estimate that 15% of this is attributable to 5G for x, y, z reasons".

Everyone takes 100% credit. And then tries to imply it offsets their own internal CO2 use.

"Yes, 5G needs more energy to run the network. But it's lower CO2 per bit, and for every ton we generate, we enable 2 tons in savings in the wider economy".

Using that logic, the greenest industry on the planet is industrial sand production, as it's the underlying basis of every silicon chip in every technological solution for climate change.

There's some benefit from CO2 enablement calculations, for sure - and there's more work going into reasonable ways to allocate savings (look in the comments for the post I link to above), but readers should be super-aware of the limitations of "tons of CO2" as a metric in this context.

So what's the answer?

It's fairly easy to poke holes in things. It's harder to find a better solution. Having maintained spreadsheets of company and market performance and trends myself, I know that analysis is often held hostage by what data is readily available. Telcos report minutes-of-use and ARPU, so that's what everyone else uses as a basis. Governments may demand that reporting, or frame rules in those terms (for instance, wholesale voice termination rates have "per minute" caps in some countries).

It's very hard to escape from the inertia of a long and familiar dataset. Nobody want to recreate their tables and try to work out historic comparables. There is huge path dependence at play - small decisions years ago, which have been entrenched in practices in perpetuity, even though the original rationale has long since gone. (You may have noticed me mention path dependence a few times recently. It's a bit of a focus of mine at the moment....)

But there's a circularity here. Certain metrics get entrenched and nobody ever questions them. They then get rehashed by governments and policymakers as the basis for new regulations or measures of market success. Investors and competition authorities use them. People ignore the footnotes and asterisks warning of limitations

The first thing people should do is question the definitions of familiar public or private metrics. What do they really mean? For a ratio, are the assumptions (and definitions) for both denominator and numerator still meaningful? Is there some form of allocation process involved? Are there averages which amalgamate lots of dissimilar categories?

I'd certainly recommend Tim Harford's book "How to Make the World Add Up" (link) as a good backgrounder to questioning how stats are generated and sometimes misused.

But the main thing I'd suggest is asking whether metrics can either hide important nuance - or can set up flawed incentives for management.

There's a long history of poor metrics having unintended consequences. For example, it would be awful (but not inconceivable) to raise ARPUs by cancelling the accounts of low-end users. Or perhaps an IoT-focused vertical service provider gets punished by the markets for "overpaying" for spectrum in an area populated by solar panels rather than people.

Stop and question the numbers. See who uses them / expects them and persuade them to change as well. Point out the fallacies and flawed incentives to policymakers.

If you have any more examples of bad numbers, feel free to add them in the comments. I forecast there will be 27.523 of them, by the end of the year.

The author is an industry analyst and strategy advisor for telecoms companies, governments, investors and enterprises. He often "stress-tests" qualitative and quantitative predictions and views of technology markets. Please get in touch if this type of viewpoint and analysis interests you - and also please follow @disruptivedean on Twitter.

Saturday, August 08, 2020

A rant about 5G myths - chasing unicorns​

Exasperated rant & myth-busting time.

I actually got asked by a non-tech journalist recently "will 5G change our lives?"

Quick answer: No. Emphatically No.


#5G is Just Another G. It's not a unicorn

Yes, 5G is an important upgrade. But it's also *massively* overhyped by the mobile industry, by technology vendors, by some in government, and by many business and technology journalists.

- There is no "race to 5G". That's meaningless geopolitical waffle. Network operators are commercial organisations and will deploy networks when they see a viable market, or get cajoled into it by the terms & timing of spectrum licenses.

- Current 5G is like 4G, but faster & with extra capacity. Useful, but not world-changing.

- Future 5G will mean better industrial systems and certain other cool (but niche) use-cases.

- Most 5G networks will be very patchy, without ubiquitous coverage, except for very rudimentary performance. That means 5G-only applications will be rare - developers will have to assume 4G fallback (& WiFi) are common, and that dead-spots still exist.

- Lots of things get called 5G, but actually aren't 5G. It's become a sort of meaningless buzzword for "cool new wireless stuff", often by people who couldn't describe the difference between 5G, 4G or a pigeon carrying a message.

- Anyone who talks about 5G being essential for autonomous cars or remote surgery is clueless. 5G might get used in connected vehicles (self-driving or otherwise) if it's available and cheap, but it won't be essential - not least as it won't work everywhere (see above).

- Yes, there will be a bit more fixed wireless FWA broadband with 5G. But no, it's not replacing fibre or cable for normal users, especially in competitive urban markets. It'll help take FWA from 5% to 10-12% of global home broadband lines.

- The fact the 5G core is "a cloud-native service based architecture" doesn't make it world-changing. It's like raving about a software-defined heating element for your toaster. Fantastic for internal flexibility. But we expect that of anything new, really. It doesn't magically turn a mobile network into a "platform". Nor does it mean it's not Just Another G.

- No, enterprises are not going to "buy a network slice". The amount of #SliceWash I'm hearing is astonishing. It's a way to create some rudimentary virtualised sub-networks in 5G, but it's not a magic configurator for 100s or 1000s of fine-grained, dynamically-adjusted different permutations all coexisting in harmony. The delusional vision is very far removed from the mundane reality.

- The more interesting stuff in 5G happens in Phase 2/3, when 3GPP Release 16 & then Release 17 are complete, commercialised & common. R16 has just been finalised. From 2023-4 onward we should expect some more massmarket cool stuff, especially for industrial use. Assuming the economy recovers by then, that is.

- Ultra-reliable low-latency communications (URLLC) sounds great, but it's unclear there's a business case except at very localised levels, mostly for private networks. Actually, UR and LL are two separate things anyway. MNOs aren't going to be able sell reliability unless they also take legal *liability* if things go wrong. If the robot's network goes down and it injures a worker, is the telco CEO going to take the rap in court?

- Getting high-performance 5G working indoors will be very hard, need dedicated systems, and will take lots of time, money and trained engineers. It'll be a decade or longer before it's very common in public buildings - especially if it has to support mmWave and URLLC. Most things like AR/VR will just use Wi-Fi. Enterprises may deploy 5G in factories or airport hangars or mines - but will engineer it very carefully, examine the ROI - and possibly work with a specialist provider rather than a telco.

- #mmWave 5G is even more overhyped than most aspects. Yes, there's tons of spectrum and in certain circumstances it'll have huge speed and capacity. But it's go short range and needs line-of-sight. Outdoor-to-indoor coverage will be near zero. Having your back to a cell-site won't help. It will struggle to go through double-glazed windows, the shell of a car or train, and maybe even your bag or pocket. Extenders & repeaters will help, but it's going to be exceptionally patchy (and need tons of fibre everywhere for backhaul).

- 5G + #edgecomputing is a not going to be a big deal. If low-latency connections were that important, we'd have had localised *fixed* edge computing a decade ago, as most important enterprise sites connect with fibre. There's almost no FEC, so MEC seems implausible except for niches. And even there, not much will happen until there's edge federation & interconnect in place. Also, most smartphone-type devices will connect to someone else's WiFi between 50-80% of the time, and may have a VPN which means the network "egress" is a long way from the obvious geographically-proximal edge.

- Yes, enterprise is more important in 5G. But only for certain uses. A lot can be done with 4G. "Verticals" is a meaningless term; think about applications.

- No, it won't displace Wi-Fi. Obviously. I've been through this multiple times.

- No, all laptops won't have 5G. (As with 3G and 4G. Same arguments).

- No, 5G won't singlehandedly contribute $trillions to GDP. It's a less-important innovation area than many other things, such as AI, biotech, cloud, solar and probably quantum computing and nuclear fusion. So unless you think all of those will generate 10's or 100's of $trillions, you've got the zeros wrong.

- No, 5G won't fry your brain, or kill birds, or give you a virus. Conspiracy theorists are as bad as the hypesters. 5G is neither Devil nor Deity. It's just an important, but ultimately rather boring, upgrade.

There's probably a ton more 5G fallacies I've forgotten, and I might edit this with a few extra ones if they occur to me. Feel free to post comments here, although the majority of debate is on my LinkedIn version of this post (here). This is also the inaugural post for a new LinkedIn newsletter, Most of my stuff is not quite this snarky, but it depends on my mood. I'm @disruptivedean on Twitter so follow me there too.

If you like my work, and either need a (more sober) business advisory session or workshop, let me know. I'm also a frequent speaker, panellist and moderator for real and virtual events.

Just remember: #5GJAG. Just Another G.

Friday, August 10, 2018

Thoughts on roaming, local SIM cards and eSIMs

I spend a large part of my life travelling, both for work and leisure. But while I find connectivity to be hugely important, I refuse to pay ludicrous per-MB data roaming prices.

So until a couple of years ago, this meant that I had a large collection of (mostly non-functioning) local mobile SIM cards I'd bought in various countries. Typically, I'd use them in a spare phone, so I could keep me normal phone on my home SIM to get inbound SMS or missed voice-call notifications. I'd also often use the second phone as a WiFi tether for my primary iPhone.

At one point I found old SIMs from the US, Singapore, Mozambique, Vanuatu, UAE and Australia in my wallet. In some places it was easy to get local SIMs, while in others it involved cumbersome registration with a passport or other documents. Places like India and Japan were a real pain, and I just didn't bother, relying on WiFi & an occasional extortionate SMS.

That has changed in recent years - and there are now multiple options for travellers:
  • Local SIMs are often easier to obtain. Booths at airports are well-practised at registering documents, sorting APN setting and so on, in a couple of minutes
  • In the EU, roaming prices have fallen progressively to zero - often including non-EU European countries as well. Various other groups of countries or regional operator groups have also created free-roaming zones.
  • Some operators offer customers flat-rate or even free roaming to other countries, such as T-Mobile US's free (but 2G-only) international data, or $5/day for capped LTE (link). I use Vodafone UK's £6/day "roam further" plan quite a lot, especially when visiting the US (link).
  • Many travellers can get dual-SIM phones, so they can easily switch between home and local SIMs without fiddling about with trays & pins. (There's no dual-SIM iPhone though. Grrrr. More on this later). 
  • Various companies (eg Truphone) offer global/roaming SIMs, and have hoped that frequent travellers would use these as their primary/only SIM. The problem with this is that they typically rely on MVNO relationships in each country, including the user's home market - which often means poorer data plans than can be bought domestically from the main MNOs. You also don't get to benefit from multi-play plans, bundled content and so forth. I'm also not entirely convinced that MVNO traffic always gets as well-treated as the host MNO's own customer data - and that's likely to get worse with 5G and network-slicing.
  • Some providers pitch global SIMs alongside rented/bought portable WiFI hotspots, such as TEP Wireless (link). The problem is that these often just cover the same countries as the better roaming plans from normal mobile operators. 
So... in July I went on holiday to the Cape Verde islands, off the coast of West Africa. Beautiful archipelago of 9 inhabited islands, with beaches, mountains, volcanoes, hiking trails and small villages nested in sheer-sided valleys. Neither Vodafone nor any of the travel-SIM companies seemed to cover either of its two main networks. So I went and bought an unlocked WiFi hotspot (from TP-Link), and hoped to get a local SIM on arrival, as I'd read a few suggestions it was possible.

It wasn't just possible, but remarkably easy. Walking through the arrivals door from customs at the airport, I was handed a free SIM by a representative of one of the operators (Unitel) within seconds. When I unwrapped it later in the day, I found it had 200MB of data included for free. No registration needed, no upfront payment, nothing. 3G network only, but that was fine to assure myself it worked OK. The next day I found a branded store & decided to stick with that network rather than check the other one (good marketing / customer acquisition strategy!) as the price-plans seemed fine. 

I paid €12 for 5GB of data, valid for a month. There was also a 7GB and maybe a 10 or 12GB one, but I wasn't planning on streaming video. In other words, €1 a day with about 500MB available per day, for normal mobile usage during my 11-day visit. The helpful lady in the shop sorted it all out for me, including temporarily switching my new SIM into her phone to send the setup / dataplan-purchase messages, which were tricky from a device with no keypad.

This compared to the roaming-advice SMS telling me that data would cost £0.60/MB [about €0.70]. In other words, roaming data was about 300x overpriced - quite astonishing, in 2018. And the mobile industry wonders why users have such little loyalty and respect.

(It's also worth noting that WiFi was ubiquitous in any hotel, cafe, restaurant or other places that visitors might go. There were telephone cable strung along all the valleys on poles, and decently-fast broadband was common. Given the moutainous topography, you could sometimes get WiFi more readily than cellular).
 

How would eSIM change things?

But this experience got me thinking about how the experience might be different in the coming era of eSIMs and remote-provisioning. Firstly, let's assume that one or both Cape Verdean operators actually had the requisite server-side gear for RSP. And let's assume that my future iPhone either has a multi-profile eSIM capability, or has dual removable/embedded SIM capability. (Remember, I still want to get my normal SMS's from my UK Vodafone number). Potentially, a future WiFi Hotspot could be eSIM-enabled too.

But then the question is, how does the user find out about the available networks, and the available plans on those networks? What's the user journey?

And there are lots of other questions too:
  • Would I get a popup alert when I switched my phone on after the flight? 
  • Would it give me menus for all the available plans or just a subset? 
  • Would I need to have signed up in advance, either with a local CV telco, or perhaps facilitated by Apple, Vodafone or a third party? 
  • When and how would I download the new profile? What data would that require me to send back (or what would be collected automatically?). 
  • Would it be easier to get an eSIM-capable WiFi device? 
  • But would that just be the same global MVNO providers who didn't have a Cape Verde relationship for roaming?
  • What happens if something goes wrong, or you need to buy more data? Can local stores give you any help, or top-ups?
Bottom line: this whole experience would likely have been worse with eSIM, not better. And probably more costly too. Maybe in a less unusual country, with MVNOs and better roaming partnerships, it could be much more slick.

But for most "normal" countries, I'll probably stick to the £6/day plan from Vodafone for ease, even if that's 5x overpriced and should really be £1-2/day. It's annoying, but basically the equivalent of  beer, and there's probably other ways I can save money faster when on a trip. That said, now I've got my new WiFi puck, I might switch back to SIMs sometimes though, if they're easy and available at the airport. I'll certainly take it along with me as a Plan B.

Saturday, March 17, 2018

MEC and network-edge computing is overhyped and underpowered

I keep hearing that Edge Computing is the next big thing - and specifically, in-network edge computing models such as MEC. (See here for a list of all the different types of "edge"). 

I hear it from network vendors, telcos, some consultants, blockchain-based startups and others. But, oddly, very rarely from developers of applications or devices.

My view is that it's important, but it's also being overhyped. Network-edge computing will only ever be a small slice of the overall cloud and computing domain. And because it's small, it will likely be an addition to (and integrated with) web-scale cloud platforms. We are very unlikely to see edge-first providers become "the next Amazon AWS, only distributed".

Why do I think it will be small? Because I've been looking at it through a different lens to most: power. It's a metric used by those at the top- and bottom ends of the computing industry, but only rarely by those in the middle, such as network owners. This means they're ignoring a couple of orders of magnitude.

(This is a long post. You might want to grab a coffee first....)


How many zeroes?

Cloud computing involves huge numbers. There are many metrics that you can use - numbers of servers, processors, standard-sized equipment racks, floorspace and so on. But the figure that gets used most among data-centre folk is probably power consumption in watts, or more commonly here kW, MW & GW. (Yes, it's a lower-case k for kilo). 

Power is useful, as it covers the needs not just of compute CPUs and GPUs, but also storage and networking elements in data centres. It's not perfect, but given that organising and analysing information is ultimately about energy it's a valid, top-level metric. [Hey, I've got a degree in physics, not engineering. Helloooo, thermodynamics & entropy!]

Roughly speaking, the world's big data centres have a total power consumption of about 100GW. A typical one might have a capacity of 30MW, but a number of the world's largest data centres already use over 100MW individually, and there are enormous plans for locations with 600MW or even 1GW (link). No, they're not all running at full power, all the time - but that's true of any computing platform.

This growth is partly driven by an increase in the number of servers and equipment racks needed (hence growing floor-space for these buildings). But it also reflects power consumption for each server, as chips get more powerful. Most equipment racks use 3-5kW of power, but some can go as high as 20kW if that power - and cooling - is available.

So, to power "the cloud" needs 100GW, a figure that is continuining to grow rapidly. We are also seeing a rise in smaller, regional data-centres in second- and third-tier cities. Companies and governments often have private data-centres as well. These vary quite a bit, but 1-5MW is a reasonable benchmark.


How many decimal places?

At the other end of the computing power spectrum, are devices, and the components inside them. Especially for battery-powered devices, managing the power-budget down to watts or milliwatts is critical. This is the "device edge".

  • Sensors might use less than 10mW when idle & 100mW when actively processing data
  • A Raspberry Pi might use 0.5W
  • A smartphone processor might use 1-3W
  • An IoT gateway (controlling various local devices) might be 5-10W
  • A laptop might draw 50W
  • A decent crypto mining rig might use 1kW

New innovations are pushing the boundaries. Some researchers are working on sub-milliwatt vision processors (link). ARM has designs able to run machine-learning algorithms on very low-powered devices.

But perhaps the most interesting "device edge" is the future top-end Nvidia Pegasus board, aimed at self-driving vehicles. It is a 500W supercomputer. That might sound a lot, but it's still less than 1% of the engine power on most cars. A top-end Tesla P100D puts over 500kW to the wheels in "ludicrous mode", or 1000x that figure. Cars' aircon might use 2kW, to give context.

Of course, all of these device-edge computing platforms are numerous. There are billions of phones, and hundreds of millions of vehicles and PCs. Potentially, we'll get 10s of billions of sensors. Most aren't coordinated, though. 


And in the middle?

So we have milliwatts at one end of distributed computing, and gigawatts at the other, from device to cloud.

So what about the middle, where the network lives?

There are many companies talking about MEC (multi-access edge computing) and fog-computing products, with servers designed to run at cellular base stations, network aggregation points, and also in fixed-network nodes and elsewhere. 

Some are "micro-data-centres" capable of holding a few racks of servers near the largest cell towers. The very largest might be 50kW shipping-container sized units, but those will be pretty rare and will obviously need a dedicated power supply.

It's worth noting here that a typical macro-cell tower might have a power supply of 1-2kW. So if we consider that maybe 10% could be dedicated to a compute platform rather than the radio (a generous assumption), we get 100-200W, in theory. Or in other words, a cell tower edge-node will be less than half as powerful as a single car's computer.

Others are smaller server units, intended to hook into cellular small-cells, home gateways, cable street-side cabinets or enterprise "white boxes". For these, 10-30W is more reasonable.




Imagine the year 2023

Let's think 5 years ahead. By then, there could probably be 150GW of large-scale data centres, plus a decent number of midsize regional data-centres, plus private enterprise facilities.

And we could have 10 billion phones, PCs, tablets & other small end-points contributing to a distributed edge, although obviously they will spend a lot of time in idle-mode. We might also have 10 million almost-autonomous vehicles, with a lot of compute, even if they're not fully self-driving. 

Now, imagine we have a very-bullish 10 million "deep" network-compute nodes, at cell sites large and small, built into WiFi APs or controllers, and perhaps in cable/fixed streetside cabinets. They will likely have power ratings between 10W and 300W, although the largest will be numerically few in number. Choose 100W on average, for a simpler calculation. (Frankly, this is a generous forecast, but let's run with it for now).

And let's add in 20,000 container-sized 50kW units, or repurposed central-offices-as-datacentres, as well. (Also generous)

In other words, we might end up with:

150GW large data centres
50GW regional and corporate data centres
20,000x 50kW = 1GW big/aggregation-point "network-edge"
10m x 100W = 1GW "deep" network-edge nodes
1bn x 50W = 50GW of PCs
10bn x 1W = 10GW "small" device edge compute nodes
10m x 500W = 5GW of in-vehicle compute nodes
10bn x 100mW = 1GW of sensors & low-end devices

Now admittedly this is a very crude analysis. And a lot of devices will be running idle most of the time, and may need to offload functions to save battery power. Laptops are often switched off entirely. But equally, network-edge computers won't be running at 100%, 24x7 either.


The 1% edge

So at a rough, order-of-magnitude level, we can see that the total realistic "network edge", with optimistic assumptions, will account for less than 1% of total aggregate compute capability. And with more pessimistic assumptions, it might easily be just 0.1%. 

Any more will simply not be possible to power, unless there are large-scale upgrades to the electricity supply to network infrastructure - installed at the same time as backhaul upgrades for 5G, or deployment of FTTH. (And unlike copper, fibre can't even power small devices on its own). And haven't seen announcements of any telcos building hydroelectric power stations anywhere.

Decentralised, blockchain-based edge "fogs" are unlikely to really solve this problem either, even if they also use decentralised, blockchain-based power supply and management.

Now it could be argued that this 0.1-1% of computing workloads will be of such pivotal importance, that they will bring everything else into their orbit and indirect control. Could the "edge" really be the new frontier? 

I think not.

In reality, the reverse is more likely. Either device-based applications will selectively offload certain workloads to the network, or the webscale clouds will distribute certain functions. Yes, there will be some counter-examples, where the network-edge is the control point for certain verticals or applications - I think some security functions make sense, for instance, as well as an evolution of today's CDNs. But will IoT management, or AI, be concentrated in these edge nodes? It seems improbable.


Conclusion & TL:DR

In-network edge-computing architectures, such as MEC, will become more important. There are various interesting use-cases. But despite that, they will struggle to live up to the hype. 

There will be almost no applications that run *only* in the network-edge - it’ll be used just for specific workloads or microservices, as a subset of a broader multi-tier application. The main compute heavy-lifting will be done on-device, or on-cloud. As such, collaboration between edge-compute providers and industry/webscale cloud will be needed, as the network-edge will only be a component in a bigger solution, and will only very rarely be the most important component. 

One thing is definite: mobile operators won’t become distributed quasi-Amazons, running image-processing for all nearby cars or industry 4.0 robots in their networks, linked via 5G. 

Yes, MEC nodes could host Amazon Greengrass or other functions on a wholesale basis, but few developers will want to write directly to telcos' distributed-cloud APIs on a standalone basis, with or without network-slicing or 5G QoS mechanisms.

Indeed, this landscape of compute resource may throw up some unintended consequences. Ironically, it seems more likely that a future car's hefty computer, and abundant local power, could be used to offload tasks from the network, rather than vice versa.


Comments and feedback are very welcome. I'm aware I've made many assumptions here, and will doubtless generate various comments and detailed responses, either on my blog or LinkedIn posts. I haven't seen an "end to end" analysis of compute power before - if there's any tweaks to my back-of-envelope calculations, I'd welcome suggestions. If you'd like to contact me about projects or speaking engagements, I can be reached via information at disruptive-analysis dot com.

Sunday, January 07, 2018

Update: Telecom & Network Cryptocurrencies, Tokens & ICOs

Introduction

Back in August I wrote a post on blockchain-based ICOs and tokens/coins for the telecoms space (link). Quite a lot has happened since then - including a huge boom in Bitcoin and "AltCoin" valuations and public awareness - so I thought an update was useful. 

In a nutshell - there's a growing number of telecom/networking "coins" available, with a wide variety of concepts, team backgrounds and business models. Some are very interesting, but some others are... let's say, "ambitious".  And a few look like utter nonsense, seemingly lacking understanding of the relevant technology or marketplace dynamics. It's possible there's a couple of outright scams as well.

I'm not making recommendations, or giving warnings, about specific tokens here. But in the spirit of "caveat emptor", I also give a list of cautions and possible problems, that investors should think about, or ask the various currencies' teams. Telecoms is a lot more complex than many people think - especially  the "behind the scenes" bits of technology.

 
Note: If you've found this post via an ICO/cryptocurrency site, an introduction: I'm primarily a mobile and telecoms analyst. I advise on technology and business-model trends for networks and communications, eg 5G, IoT systems, Wi-Fi, voice & video & UC, regulatory policy, the future role of carriers/CSPs, and the impact of "futures" innovations like AI / ML, blockchains (public & private), quantum computing and drones on telecoms. Most of my clients are telcos or network equipment/software vendors. I'm not a fintech, crypto or blockchain generalist - I look at blockchains & tokens where they intersect with the telecom world. Please get in touch if you are interested in my research & advisory work, or if you are looking for a keynote speaker or moderator.


What's been happening with telecom cryptocurrencies?

I'm not going to repeat my previous posts on ICOs, tokens and the wider telecom blockchain space. You can read blog posts here and here, or download a full white paper I wrote for Juniper Networks, here and listen to an associated webinar here.

The second half of 2017 saw continued emphasis on private blockchain use-cases for telecoms and networks, although despite a few high-ish profile initiatives and press releases, there's not much in the "real world" yet besides pilots. I've been doing some interesting consulting work in this area, though - 2018 should throw up a lot more news.

But there has been far more noise - albeit often superficial - about public blockchain and token technologies. Few major telcos have (publicly) announced involvement, but there's growing attention from the type of smaller, competitive types of service provider. Think tier 2/3 MVNOs, travel-SIM providers, VoIP companies, messenger & mobile advertising providers and so on, rather than big carriers. [Telenor is working with a content-oriented token provider - link]

Obviously, that fits against a wider background of interest and investment in cryptocurrencies. Whether we're witnessing the birth of a new financial/transactional system, or a possible bubble, I'll leave for others to debate. To me, it looks a bit like 1995 - lots of innovative web companies, but also a lot of ridiculous concepts, with valuations to match. Which are the Amazons of the future - or the Altavistas, or the pets.com's - I'll leave to others to work out.

There has also been a corresponding rise in regulatory concern, and growing focus on so-called "utility tokens", where in theory a given coin isn't just a store of value or a payment mechanism, but has some underlying property that makes it of broader use to consumers or businesses. Typically this means that some other capability can be "tokenised" - which could be anything from property to an artist's work, and used within that business activity. 

Incidentally - one interesting comms-related trend that's appeared recently is the use of Telegram* (and some other group-messaging apps) as a mobile-friendly and anonymous/encrypted discussion & announcement forum for cryptocurrency teams. Many of the tokens use Telegram as an addition to public (often spam-infested) chat on Twitter, and private internal Slack channels, plus assorted blogging and forum tools. I haven't seen any with an RCS messenger link, obviously.

*EDIT: Telegram has just announced its *own* ICO plans, literally hours after I posted this. Details here (link)



What telecoms/networking tokens are available?

A growing number of tokens relate to things which look "telecoms-like" - whether that's data connectivity provided via cellular or WiFi, SMS or instant-messenger functions, voice-call minutes, SIM identities or something else similar. 

Some are trying to resell existing users' quotas or attention or connectivity, while others are trying to build new hardware platforms. Some are trying to create meshes or secure peer-to-peer connectivity, while others are looking to be wholesale marketplaces for service providers to offer smart-contracts to consumers (or other SPs).

(There's also another huge set of tokens for IoT-related functions and applications, but I'll consider those another time). 

Note: I'm using token, coin, cryptocurrency, altcoin etc interchangeably. Various people will assert differences vigorously, but it's not something that is relevant here.

Note 2: This is being written on 7th January 2018, so dates / funding & issuance status are accurate as of today, but obviously changing at a rapid pace.

Note 3: I am NOT making any recommendations by mentions here. Various ICOs and tokens have been of questionable quality, valuations are volatile & sometimes ridiculous, and some are rumoured to be outright scams. Be extremely careful.

Note 4: I've probably missed some out. Get in touch if you want to tell me about your telecom/network coin, or give me a detailed briefing on the ones below.


  • Airfox, Airtoken $AIR (link): Attempts to draw a link between mobile prepay credits, advertising, user-data and potentially micro-loans in future. It extends the current model of gifting or sending "recharges" to many international mobile operators' prepay customers, by shifting from normal payments to a cryptocurrency bought in a marketplace or earned by viewing ads. 
  • Althea (link): Aiming to build a network of WiFi and other wireless networks, underpinned by cryptocurrency micropayments and incentives. Recently decided against an ICO, in favour of being "cryptocurrency neutral" - see blog here
  • Ammbr [DISCLOSURE: I am an advisor], Ammbr, $AMR (link). Private investor funded, but tokens being listed on exchanges soon. Developing a hardware mesh networking system [Wi-Fi & other technologies], linked to blockchain-based micropayment and self-sovereign identity platform. Aiming first at locations with "unconnected" or poorly-connected communities, but with broader applicability.
  • Birdchain, $BIRD (link): Pre-ICO. Developing a messaging app & platform for users to re-sell their SMS allocation for application-to-person messaging 
  • Blocknum, $GIGA token (link) Token sale currently occuring. Looking at using the telephone network (PSTN), SIP signalling [used for VoIP] and phone numbers as a basis for a new blockchain for transactions.
  • Bubbletone, Universal Mobile Token, $UMT (link). Currently doing pre-sale before ICO. Intending to be a marketplace for MNOs/MVNOs to publish data-plans or content services as smart contracts, with the plans/identities pushed down to users via multi-IMSI SIM cards, or as eSIM profiles. Aims to remove premiums for roaming. 
  • Crypvisr, $CVN (link): ICO in 2017, listing on exchanges due soon. Encrypted messaging/communications platform, aimed at both consumers and enterprises.
  • DENT Wireless Dent-coin, $DNT (link). Platform for mobile data plan & allowance purchase and sale. Aiming to remove roaming fees. Early app version is live.
  • EncryptoTel, $ETT (link): Token-based enterprise "cloud PBX" communications system. 
  • Mobilink, Mobi-Coins $MOBI (link). Upcoming ICO. Attempting to create an ad-funded mobile voice and data service, with a custom SIM card and network of MNO/MVNO relationships.  
  • Mysterium, $MYST, (link) Decentralised VPN aiming to allow people to share unused network capacity, and use encryption to reduce the risk of intrusive data analytics of Internet usage by ISPs. It's a bit similar to Tor, but more flexible
  • Qlink, $QLC (link): Token sale ongoing. Platform for sharing & micropayments for a variety of telco "assets", starting with WiFi access & then aiming for cellular data, SMS and content. Also planning own access points, including LTE-U unlicenced cellular.
  • Rightmesh, $MESH (link): Upcoming ICO. Creating an incentivised device-to-device mesh (WiFi, Bluetooth etc). The company operating it (called Left.io) also offers another device-to-device communications/sharing app called Yo.
  • Smartmesh, $SMT (link) Tokenised device-to-device mesh based on WiFi, Bluetooth LE etc., starting with smartphones connecting via an incentivised peer-to-peer mechanism.
  • SMSChain, $SMSTO, (link): Creating a decentralised SMS gateway for application-to-person text messages. Incentivises users to donate their unused SMS quotas, via a mobile app. Cancelled proposed ICO (link) & may list tokens on exchanges at later date.
  • Telcoin, $TEL, (link): Payment/money-transmission token intended to be distributed through existing mobile operators, and aggregators.
  • Telegram, Grams: [Added as this emerged shortly after I published this - see link] The messenger app is considering a huge ICO and token sale, which could allow it to embrace payments and money-transfer, and perhaps other applications to become a cryptocurrency-enriched competitor to WeChat and FB Messenger.

What could possibly go wrong? A lot.

A lot of my work as an analyst and consultant involves "stress-testing" ideas and business-plans. Many concepts sound interesting, but face challenges of practicality - whether that's technical, commercial, legal or other. Reading through a lot of the tokens' documentation, or speaking to project teams, I see a lot of aspirations that are going to bang heads against reality.

Some problems can be fixed with time, or clever developers. Others are going to be intractable, and will need workarounds, or completely different strategies.

In this post, I'm not offering opinions or reviews of individual tokens, although I have private opinions on a number of them. A lot of what I read could be best described as "aspirational" - and in some cases, there are many layers of complexity or problems ahead, and I anticipate pivots and revised expectations, as practical issues come to light. Some that I've seen look completely naive or muddle-headed (or even, whisper it, fraudulent).

Some of the issues that could derail the various tokens' opportunity and prospects include:
  • Most existing telecom plans (fixed and mobile) have terms and conditions that prohibit resale of "unused capacity" - and are likely to be updated with new token-proof T's & C's if risks are seen.
  • Most MVNOs will also have a range of limitations in their contracts, from their host MNOs.
  • Security - everything new comes with its own novel risks, even if the blockchain itself is secure. For instance, would you fancy having your 2FA password codes sent via SMS, that transits some random person's phone and app?
  • Nobody likes paying for stuff (even micropayments) if it's also available for free via a different path. That means that there will be a lot of arbitrage - for example, it's hard to compete against free WiFi, or against the newer "roam like home" packages.
  • Nobody likes paying for stuff in a "currency" that changes in value compared to normal money. I don't want to use some sort of converter to know how many pennies it'll cost for a phone call or Wi-Fi connection.
  • There's all sorts of regulatory horribleness around telcos, at national, regional and global levels. Trying to assert "it's all decentralised, we don't need to follow the rules" won't work if it involves licensed spectrum, or messing with legal rules on registering network users' identities, lawful intercept etc.
  • Running anything blockchain-related on a smartphone uses power & battery - especially if it needs to keep radio connections active as well. Power-management is always a challenge.
  • Traditional telecom networks have complex operational and billing software. While some is too-inflexible and very expensive, most is a necessary evil to deal with performance management, customer service, creating innovative plans, deal with inter-party revenue-sharing and so on. In a decentralised world, how do you query charges, or call when something fails? How can you watch for problems emerging? (And who watches?)
  • The hard part of getting data connections working is often "backhaul", linking a base station or WiFi access point to the main Internet, especially from remote areas. It's quite hard to tokenise digging up roads to install fibres.
  • Slow deployment of eSIM-capable devices & back-end infrastructure, and willingness of carriers to offer remotely-provisioned "profiles" to third parties.
  • Private cellular networks (even in unlicensed / shared spectrum) need core-network software and numerous other "moving parts". Deploying LTE-U isn't like buying a Wi-Fi access point from a store & setting it up.
  • A lot of existing consumer Wi-Fi access points are provided by cable operators & broadband telcos, and integrated with a modem/router. Most people won't want to replace them, or daisy-chain a second device, or re-flash the hardware. Business Wi-Fi systems are usually locked-down by IT departments.
  • Anything using a mobile app for control, mining, transaction or advertising is at the whim of Apple's AppStore rules, and to a lesser degree Google's. They also need to deal with updates to features in new versions of iOS and Android, which may break things, or compete with them.
  • All of the various parallel schemes will need to inter-work with each other at some point, if they're successful.
  • Adding extra latency because of extra network hops (or worse, payment negotiations) is going to be a lousy user-experience. 
  • The Internet and telecoms are very bi-directional. Do packets (or SMSs or calls) in both directions get charged the same amounts?
  • Advertising-funded mobile connectivity has been tried multiple times, and has multiple problems. In particular, you can't insert ads into most apps, and use of encryption/privacy tools like VPNs mean that cookies in mobile browsers may not work properly forever.
There's probably another 20-100 similar "gotchas" out there, applying to some or all of the token concepts. Part of my work is trying to predict these types of problem before they arise, and have an idea of how tractable they are, and what workaround might exist. If you're an innovator in this space, or an investor, and want someone to cast a critical eye over a project, get in touch. (information AT disruptive-analysis DOT com, or on LinkedIn)

Ironically one area that's almost certainly overestimated as a problem is anything to do with Net Neutrality, though. I've covered various examples of such nonsense in prior posts, such as this one (link).

It should be noted that many of these tokens are thinly-traded, or even unlisted on any major cryptocurrency exchanges. Some are pre-ICO / private-funding. Please note that I offer no recommendations on investing in anything, especially cryptocurrencies. Do your own research and use extreme caution if you're tempted. 


Summary

The tokenisation of telecoms and networks is evolving rapidly. It's genuinely fascinating, as are the potential uses of private/permissioned blockchains inside telcos. However, anyone expecting decentralisation to change the networking world in 2018 (or 2019) is going to be disappointed. 

There's lots of enthusiasm, but many roadblocks in the way. Many of the concepts are likely to prove unworkable - and while some projects may raise enough funds through ICOs or private investors to allow them to pivot, others will likely fail. If you're speculating in the short term, that might not matter. But be aware that harsh realities will come along with the new opportunities.

Please get in touch if you'd like to get deeper analysis, or if you're looking for advisory input as a project team or investor (although I'm not able to give investment recommendations).