Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label FWA. Show all posts
Showing posts with label FWA. Show all posts

Thursday, June 29, 2023

5G data traffic growth - the devil (FWA) is in the detail

This blog combines two separate, linked LinkedIn articles published in June 2023 on consecutive days. The original posts and comment threads are here and here.

Measuring #mobile data traffic is important for operators, vendors, and policymakers.

As I've said before, we should use *good* #metrics to measure the #telecoms industry, rather than just *easy* metrics. This post is an example of what I mean.

Yesterday, Ericsson released its latest Mobility Report. It's always an interesting trove of statistics on mobile subscribers, networks and usage, with extra topical articles, sometimes written by customers or guests.

While obviously it's very oriented to cellular technologies and has an optimistic pro-3GPP stance, it has a long pedigree and a lot of work goes into it. It's partly informed by private stats from Ericsson's real-world, in-service networks run by MNO customers.

This edition includes extra detail, such as breaking out fixed-wireless access & separating video traffic into VoD #streaming (eg Netflix) vs. social media like TikTok and YouTube.

It had plenty of golden "information nuggets". For instance, traffic density can be 500-1000x higher in dense urban locations than sparse rural areas. I'll come back to that another time.

Global mobile data grew 36% from Q1'22 to Q1'23. The full model online predicts 31% growth in CY2023, falling to just 15% in 2028, despite adding in AR/VR applications towards the end of the decade. That's a fairly rapid s-curve flattening.

For Europe, MBB data growth is predicted at 29% in 2023, falling to only 12% in 2028. That's a *really* important one for all sorts of reasons, and is considerably lower than many other forecasts.

But what really caught my eye was this "#FWA data traffic represented 21% of global mobile data traffic at the end of 2022". Further, it is projected to grow much faster than mobile broadband (MBB) and account for *30%* of total traffic in 2028, mostly #5G. When the famous "5G triangle" of use-cases was developed by ITU, it didn't even mention FWA.

However, the report didn't break out this split by region. So I decided to estimate it myself based on the regional split of FWA subscribers, which was shown in a graphic. I also extended the forecasts out to 2030.

I then added an additional segmentation of my own - an indoor vs outdoor split of MBB data. I've pegged this at 75% indoors, aligning with previous comments from Ericsson and others. Some indoor MBB is served by dedicated in-building wireless systems, and some is outdoor-to-indoor from macro RAN or outdoor small cells.

The result is fascinating. By the 2030, it is possible that over 40% of European 5G data traffic will be from FWA. Just 14% of cellular data will be for outdoor mobile broadband. So what's generating the alleged 5G GDP uplift?

That has massive implications for spectrum policy (eg on #6GHz) and proposed #fairshare traffic fees. It also highlights the broad lack of attention paid to indoor cellular and FWA.

Note: This is a quick, rough estimate, but it's the type of data we need for better decisionmaking. I hope to catalyse others to do similar analysis.

 


A separate second post then looked at the policy aspects of this:

Yesterday's post on mobile data traffic - and contribution from 5G FWA and indoor use - seems to have struck a chord. Some online and offline comments have asked about the policy implications.

There are several conclusions for regulators and telecoms/infrastructure ministries:

- Collect more granular data, or make reasoned estimates, of breakdowns of data traffic in your country & trends over time. As well as #FWA vs #MBB & indoor vs outdoor, there should be a split between rural / urban / dense & ideally between macro #RAN vs outdoor #smallcell vs dedicated indoor system. Break out rail / road transport usage.
- Develop a specific policy (or at least gather data and policy drivers) for FWA & indoor #wireless. That feeds through to many areas including spectrum, competition, consumer protection, #wholesale, rights-of-way / access, #cybersecurity, inclusion, industrial policy, R&D, testbeds and trials etc. Don't treat #mobile as mostly about outdoor or in-vehicle connectivity.
- View demand forecasts of mobile #datatraffic and implied costs for MNO investment / capacity-upgrade through the lens of detailed stats, not headline aggregates. FWA is "discretionary"; operators know it creates 10-20x more traffic per user. In areas with poor fixed #broadband (typically rural) that's potentially good news - but those areas may have spare mobile capacity rather than needing upgrades. Remember 4G-to-5G upgrade CAPEX is needed irrespective of traffic levels. FWA in urban areas likely competes with fibre and is a commercial choice, so complaints about traffic growth are self-serving.
- Indoor & FWA wireless can be more "tech neutral" & "business model neutral" than outdoor mobile access. #WiFi, #satellite and other technologies play more important roles - and may be lower-energy too. Shared / #neutralhost infrastructure is very relevant.
- Think through the impact of detailed data on #spectrum requirements and bands. In particular, the FWA/MBB & indoor splits are yet more evidence that the need for #6GHz for #5G has been hugely overstated. In particular, because FWA is "deterministic" (ie it doesn't move around or cluster in crowds) it's much more tolerant of using different bands - or unlicensed spectrum. Meanwhile indoor MBB can be delivered with low-band macro 5G, dedicated in-building systems (perhaps mmWave), or offloaded to WiFi. Using midband 5G and MIMO to "blast through walls" is not ideal use of either spectrum or energy.
- View 5G traffic data/forecasts used in so-called #fairshare or #costrecovery debates with skepticism. Check if discretionary FWA is inflating the figures. Question any GDP impact claims. Consider how much RAN investment is actually serving indoor users, maybe inefficiently. And be aware that home FWA traffic skews towards TVs and VoD #streaming (Netflix, Prime etc) rather than smartphone- or upload-centric social #video like TikTok & FB/IG.

Telecoms regulation needs good input data, not convenient or dramatic headline stats.

 

Saturday, August 08, 2020

A rant about 5G myths - chasing unicorns​

Exasperated rant & myth-busting time.

I actually got asked by a non-tech journalist recently "will 5G change our lives?"

Quick answer: No. Emphatically No.


#5G is Just Another G. It's not a unicorn

Yes, 5G is an important upgrade. But it's also *massively* overhyped by the mobile industry, by technology vendors, by some in government, and by many business and technology journalists.

- There is no "race to 5G". That's meaningless geopolitical waffle. Network operators are commercial organisations and will deploy networks when they see a viable market, or get cajoled into it by the terms & timing of spectrum licenses.

- Current 5G is like 4G, but faster & with extra capacity. Useful, but not world-changing.

- Future 5G will mean better industrial systems and certain other cool (but niche) use-cases.

- Most 5G networks will be very patchy, without ubiquitous coverage, except for very rudimentary performance. That means 5G-only applications will be rare - developers will have to assume 4G fallback (& WiFi) are common, and that dead-spots still exist.

- Lots of things get called 5G, but actually aren't 5G. It's become a sort of meaningless buzzword for "cool new wireless stuff", often by people who couldn't describe the difference between 5G, 4G or a pigeon carrying a message.

- Anyone who talks about 5G being essential for autonomous cars or remote surgery is clueless. 5G might get used in connected vehicles (self-driving or otherwise) if it's available and cheap, but it won't be essential - not least as it won't work everywhere (see above).

- Yes, there will be a bit more fixed wireless FWA broadband with 5G. But no, it's not replacing fibre or cable for normal users, especially in competitive urban markets. It'll help take FWA from 5% to 10-12% of global home broadband lines.

- The fact the 5G core is "a cloud-native service based architecture" doesn't make it world-changing. It's like raving about a software-defined heating element for your toaster. Fantastic for internal flexibility. But we expect that of anything new, really. It doesn't magically turn a mobile network into a "platform". Nor does it mean it's not Just Another G.

- No, enterprises are not going to "buy a network slice". The amount of #SliceWash I'm hearing is astonishing. It's a way to create some rudimentary virtualised sub-networks in 5G, but it's not a magic configurator for 100s or 1000s of fine-grained, dynamically-adjusted different permutations all coexisting in harmony. The delusional vision is very far removed from the mundane reality.

- The more interesting stuff in 5G happens in Phase 2/3, when 3GPP Release 16 & then Release 17 are complete, commercialised & common. R16 has just been finalised. From 2023-4 onward we should expect some more massmarket cool stuff, especially for industrial use. Assuming the economy recovers by then, that is.

- Ultra-reliable low-latency communications (URLLC) sounds great, but it's unclear there's a business case except at very localised levels, mostly for private networks. Actually, UR and LL are two separate things anyway. MNOs aren't going to be able sell reliability unless they also take legal *liability* if things go wrong. If the robot's network goes down and it injures a worker, is the telco CEO going to take the rap in court?

- Getting high-performance 5G working indoors will be very hard, need dedicated systems, and will take lots of time, money and trained engineers. It'll be a decade or longer before it's very common in public buildings - especially if it has to support mmWave and URLLC. Most things like AR/VR will just use Wi-Fi. Enterprises may deploy 5G in factories or airport hangars or mines - but will engineer it very carefully, examine the ROI - and possibly work with a specialist provider rather than a telco.

- #mmWave 5G is even more overhyped than most aspects. Yes, there's tons of spectrum and in certain circumstances it'll have huge speed and capacity. But it's go short range and needs line-of-sight. Outdoor-to-indoor coverage will be near zero. Having your back to a cell-site won't help. It will struggle to go through double-glazed windows, the shell of a car or train, and maybe even your bag or pocket. Extenders & repeaters will help, but it's going to be exceptionally patchy (and need tons of fibre everywhere for backhaul).

- 5G + #edgecomputing is a not going to be a big deal. If low-latency connections were that important, we'd have had localised *fixed* edge computing a decade ago, as most important enterprise sites connect with fibre. There's almost no FEC, so MEC seems implausible except for niches. And even there, not much will happen until there's edge federation & interconnect in place. Also, most smartphone-type devices will connect to someone else's WiFi between 50-80% of the time, and may have a VPN which means the network "egress" is a long way from the obvious geographically-proximal edge.

- Yes, enterprise is more important in 5G. But only for certain uses. A lot can be done with 4G. "Verticals" is a meaningless term; think about applications.

- No, it won't displace Wi-Fi. Obviously. I've been through this multiple times.

- No, all laptops won't have 5G. (As with 3G and 4G. Same arguments).

- No, 5G won't singlehandedly contribute $trillions to GDP. It's a less-important innovation area than many other things, such as AI, biotech, cloud, solar and probably quantum computing and nuclear fusion. So unless you think all of those will generate 10's or 100's of $trillions, you've got the zeros wrong.

- No, 5G won't fry your brain, or kill birds, or give you a virus. Conspiracy theorists are as bad as the hypesters. 5G is neither Devil nor Deity. It's just an important, but ultimately rather boring, upgrade.

There's probably a ton more 5G fallacies I've forgotten, and I might edit this with a few extra ones if they occur to me. Feel free to post comments here, although the majority of debate is on my LinkedIn version of this post (here). This is also the inaugural post for a new LinkedIn newsletter, Most of my stuff is not quite this snarky, but it depends on my mood. I'm @disruptivedean on Twitter so follow me there too.

If you like my work, and either need a (more sober) business advisory session or workshop, let me know. I'm also a frequent speaker, panellist and moderator for real and virtual events.

Just remember: #5GJAG. Just Another G.

Friday, October 04, 2019

Updates on UK Neutral Host and local spectrum developments

I've written & spoken extensively about the new Ofcom rules for localised spectrum in the UK, both in new "innovation bands" like 3.8-4.2GHz and in secondary licensing of existing MNO national frequencies, such as 2.6GHz. (See here and here). The secondary licensing model is pretty unique, as it allows people to request to use telcos' spectrum resources which are lying fallow, with no plans for build-out in that location by the license holder. It's a bit like the spectrum-leasing model seen in some countries' remote areas for mining or community wireless.

As well as pure private networks, I see value in these bands for neutral-host propositions, and various forms of infill/coverage-extension. NHNs involve third-party operators offering wholesale capacity to MNOs and sometimes other service providers, either in their own spectrum, or some sort of shared infrastructure.

The first* example of the secondary reuse scenario has been announced (link), by Digital Colony's unit StrattoOpencell and Vodafone. OpenCell now has access to VF's 2.6GHz band, for a private LTE network covering a holiday site for caravans, in Devon in SW England. Most of OpenCell's previous focus has been on in-building, although in the last few months it has acquired outdoor assets as well.

The site currently uses Wi-Fi to provide broadband to caravans, as running fibre to each doesn't really make sense. However, there is significant interference between the outdoor site Wi-Fi and any "indoor" hotspots used within each of the thin-walled mobile homes for connecting PCs and other devices. 

The idea is to provide fixed-access 4G from a central LTE base station, to a Wi-Fi unit in each caravan. The cost will be paid for as part of plot rental fees charged by the site owner to the residents/visitor, bundled in with power and water and so on.

For now, this is a Private LTE service for local FWA. But it could be extended to SIMs for onsite mobile devices (perhaps the site's own staff phones or IoT devices), or support Vodafone's smartphone MBB subscribers onsite. I guess it could also handle WiFi-Calling / SMS for other MNOs' users (if the signal is strong enough and the phones set up correctly) or perhaps even allow roaming. 

I'm not sure if the agreements with Vodafone and Ofcom to reuse spectrum locally would allow full neutral-host, broadcasting the IDs of the other UK MNOs, though. Maybe as the various network-sharing and national-roaming options under consideration by the UK Government evolve, that could be a possibility.

In theory, I also guess Vodafone could have offered this by itself, either to the site owners or the individual tenants, but most MNOs aren't really geared up to work on individualised local business-models such as this, especially if they involve new infrastructure, new pricing plans and so on. It is also unlikely to set up a "micro-MVNO" for the site owner, if it needs to install hardware in a new location.

This is something of a new variant of private and Neutral Host mobile - and one of the first I've seen to use local secondary spectrum, rather than national licenses acquired by a wholesale specialist (such as Dense Air, in Ireland or NZ). 

I could also imagine a future vertical-sector specialist (let's say a new firm called Camping Mobile) could try to do this for multiple sites, perhaps working with OpenCell or other NHN providers as technical enablers.

There definitely seems to be a bit of race between the new US CBRS deployments, and the UK's new local spectrum models, to see which gets the most innovative new concepts and mobile networks to market. The German industrial 5G band and a few others are worth watching too. 

I'm tracking and speaking to numerous NHN providers in the UK and elsewhere - and it's pretty fascinating how diverse their spectrum, backhaul and go-to-market strategies are. For 5G, rather than 4G, there's an interesting overlap with Open RAN as well, but that's a post for another time.

If you're interested in a deeper dive, I'm hosting my 2nd NHN public workshop on November 21st in London. See (here) for details, or (here) to discuss a private internal advisory engagement.


*This is the first example to be based on Ofcom's new licensing regime. Arguably a trial deployment from friend James Body's Ch4lke Mobile / Telet Research got there first in concept (see here and here). There's also early NHN trials at some of the UK's DCMS 5G testbed projects, such as AutoAir and 5GRuralFirst, and private cellular at several others.