Speaking Engagements & Private Workshops - Get Dean Bubley to present or chair your event

Need an experienced, provocative & influential telecoms keynote speaker, moderator/chair or workshop facilitator?
To see recent presentations, and discuss Dean Bubley's appearance at a specific event, click here

Showing posts with label video. Show all posts
Showing posts with label video. Show all posts

Thursday, June 22, 2023

Data traffic growth forecasts - AD Little's new report has a lot better methodology than most

This post originally appeared on June 5 on my LinkedIn feed, which is now my main platform for both short posts and longer-form articles. It can be found here, along with the comment stream. Please follow / connect to me on LinkedIn, to receive regular updates (about 1-3 / week)

When I saw that Arthur D. Little had published a report on “The evolution of data growth in Europe”, on behalf of ETNO Association & GSMA, I rolled my eyes.
 
Both organisations have previously published terrible studies by consultants, riddled with flawed assumptions and dodgy multiplier "fiddle factors". I’ve loudly criticised Axon and Coleago reports related to the (un)#fairshare and #6GHz #spectrum debates respectively.
 
So I started the ADL report with trepidation, not helped by a strange typo / editing error in the first paragraph.
 
But actually, the report is pretty good, and I broadly agree with both methodology and conclusions, albeit with one major caveat.
 
It estimates usage of home and mobile broadband on the basis of hours-per-day of active use of heavy applications such as video streaming, gaming and possible metaverse-type experiences.
 
I’ve used GB-per-hour myself, to model passenger data-traffic demand on trains. It makes more sense than the usual Gbps, as most applications are “bursty”. It also fits the typical heuristics of human behaviour. How many seconds a day do you spend on social media?
 
The central prediction of 20% growth in fixed traffic and 25% for mobile usage seems reasonable. I could argue for 25/20 rather than 20/25, but it's fine as a rough estimate.

Importantly these rates for the next few years are well within the bounds of both fixed broadband (moving to #FTTP) and mobile (on #5G) without incremental investments in extra capacity, beyond the main "generational" shift & CAPEX. And that is driven by government policy and competition, not traffic load and congestion. The report convincingly shows that nobody really needs/values more than 100Mbps for current apps, so #gigabit networks have plenty of headroom.

My main criticism is there is no analysis of mobile device traffic carried over fixed networks and #WiFi. Smartphones used at home for video, gaming or social media will be c80% on Wi-Fi, and indoor usage is c80% of the total.

The report also talks about AI pre-emptively downloading content for “infinite scrolling”, but doesn't suggest it could be smart enough to do so mostly over cheap / low-energy fixed connections. (IMO, by 2030, governments may *mandate* cellular offload via neutral-host or Wi-Fi for indoor use).

I agree with the report's assertions that VR is in an indoor/fixed application, that most #IoT traffic is a rounding-error and that #Web3 is probably irrelevant. The #metaverse scenarios seem mostly plausible.
 
One area I think ADL underestimates is fixed broadband for video streaming. While Netflix and YouTube are “active” viewing, historically, many people just leave broadcast TV switched on, even if nobody is in the room except the cat.

If TV really goes online-only, then that becomes a genuine “waste” of capacity, unless you can advertise to pets.

Overall - really quite good analysis, which (ironically, given the sponsors) fatally undermines the #InternetTrafficTax rhetoric.

 


Sunday, November 07, 2021

No, the Metaverse is not the killer app for 5G

(This article was initially published on my LinkedIn Newsletter - click here to see the original, plus comment thread. And please subscribe!)

Let's stop the next cliche before it even starts.

Most knowledgeable people now roll their eyes in derision whenever they hear the words 5G and autonomous driving (or robotic surgery) mentioned in the same sentence. But the mobile industry's hypesters are always casting around for some new trope - and especially the mythical "killer app" that could help to justify the costs and complexity.

And as if on cue, the Metaverse - essentially a buzzword meaning a hybrid of AR/VR with the social web, collaboration and gaming - has captured the headlines.

No alt text provided for this image

The growing noise around Metaverse technologies - and especially Facebook's recent rebrand to Meta - is attracting a whole slew of bandwagon-jumpers. The cryptocurrency community has been the first to trumpet its assumed future role - perhaps unsurprisingly, since they tend to be even more fervent and boosterish than the mobile sector. But we're also seeing the online shopping, advertising and gaming worlds hail the 'Verse as the next big thing.

Next up - I can pretty much guarantee it - will be the 5G industry talking about millisecond latency and buying a "Metaverse network slice". We'll probably get the edge-computing crowd popping up shortly afterwards too. I've already seen a few posts hailing the Metaverse as the possible next big thing for MNOs (mobile network operators).

They're wrong.

The elephant in the room

If you've found this article without knowing my normal coverage themes, you might be surprised to read that the single biggest issue for connecting Metaverse devices and users will be real, physical walls.

If you go through Mark Zuckerberg's lengthy video intro to Meta and his view of future technologies, you'll notice that a high % of scenarios and use-cases are indoors. Gaming from your sofa. Virtual living rooms. Hybrid work environments blending WFH with in-person meetings, and so on.

This shouldn't be a huge surprise. The more immersive a technology is - and especially if it's VR rather than AR based - the more likely people will take part while seated, or at least not while walking around an outdoor environment with obstacles and dangers. Most gaming, and most business collaboration takes places indoors too.

And indoor environments tend to have particular ways that connectivity is delivered to devices. Generally, Wi-Fi tends to be used a lot, as the access points are themselves indoors, at the end of broadband connection or office local area network.

Basically, wireless signals at frequencies above 2-3GHz don't get inside buildings very well from outside, and the higher the performance, the worse that propagation tends to be. Put simply, 5G-connected headsets and other devices will generally not work reliably indoors, especially if they have to deliver consistent high data speeds and low latencies which need higher frequencies. We can also expect the massive push for Net Zero in coming years to mean ever-better insulated buildings, which will make matters even worse for wireless signals as a side-effect.

For sure, certain locations will have well-engineered indoor 5G systems that will work effectively - but software developers generally won't be able to assume this. Airports, big sports venues, shopping malls and some industrial sites like factories will be at the top of the list for these types of solutions. For those locations, 5G Metaverse connections may well be widely used and effective. However, those are the exceptions - and it will take many years to deploy new in-building systems, or upgrade existing infrastructure anyway.

In particular, most homes and offices will have patchy or sometimes no 5G coverage, especially in internal rooms, elevators or basements. (There might be a 5G signal or logo displayed on the device, but that doesn't mean that the famously-promised gigabit speeds or millisecond latencies will actually be deliverable).

In those locations, expect Metaverse devices to use Wi-Fi as a baseline - and increasingly the Wi-Fi 6/6E/7 generations with better capabilities than previous versions.

What the Meta video tells us

I'm aware that the Metaverse is more than just Facebook / Meta, but the 1h17 video from Zuck (link) is not a bad overview of what to expect in terms of experiences, devices and business models. Obviously there will be different views from Epic Games, Microsoft's various initiatives around Hololens and Mesh, plus whatever Apple is quietly cooking up, but this is a decent place to start.

The first thing to note is the various Horizon visions that Meta is pitching - Home, Worlds and Workrooms. These are (broadly) for close social interaction, gaming/larger-scale social and business collaboration - especially hybrid work.

Mostly, the demos and visions are expected to take place from the participant's home, office, school or similar venue. There's a couple of outdoor examples of enhanced sports, or outdoor art/advertising as well. Virtual desktops, avatars that mimic eye and facial movements and so on.

In terms of devices, there's a large emphasis on headsets (obviously the Oculus Quest, and also the new high-end Cambria device promised for 2022) as well as discussions of AR glasses, from the RayBan Stories recently launched, to a forthcoming project called Nazare.

The technology discussion is all around the functional elements, not the connectivity. Optics, sensors, batteries, displays, speakers, cameras and so on. There are developer tools for hand and voice interaction, and presence / placement of objects in the virtual realm. There's lots of discussion around creators, advertising and the ability to own (and interoperate) virtual avatars, costumes and furniture. There are also nods to privacy, as would be expected.

There's no mention of connectivity, apart from noting that Cambria will have radios of some sort. The section on the "Dozen major technological breakthroughs for next-gen metaverse" doesn't mention wireless, 5G or anything else.

No alt text provided for this image

It's worth noting that Oculus devices and the RayBan glasses today use Wi-Fi. We can also expect the gesture-control in future will likely lean on UWB sensors. Outside of Facebook / Meta essentially all of today's dedicated AR/VR headsets connect with Wi-Fi or a cable, to a local network or broadband line. (That might be 5G fixed-wireless to the building for a few % of homes, but that will still use Wi-Fi on the inside).

Where cellular 4G/5G takes a role in XR is where the device is tethered to a phone or modem, or is experienced actually on the smartphone itself - think Pokemon Go, or the IKEA app that lets you design a room with virtual furniture.

We can expect the same with the Metaverse. If you're using a smartphone to access it, then obviously 5G will play a role, just as it will for all mobile apps in 3-4 years time when penetration has increased.

Will Cambria and future iterations feature 5G built-in? Maybe but I doubt it, not least because of the extra cost and engineering involved, as well as multiple versions to support different regional frequency options. Would a future Apple AR/Metaverse headset feature cellular, like some versions of the Watch? Again, that's possible but I wouldn't bet on it.

In the second half of the decade, later versions of 5G (Release 17 & 18) will have useful new features like centimetre-accuracy positioning that could be useful for Metaverse purposes - but again, that's reliant on having decent coverage in the first place. There will likely be some useful aspects outdoors though - for instance accurate measurement of vehicles on roadways.

Facebook Connectivity becomes Meta too

One other thing I noticed is a reference on LinkedIn to Facebook's often-overlooked Connectivity division, which does all sorts of interesting programmes and initiatives like TIP (which does OpenRAN and other projects), Terragraph 60GHz mesh, Express Wi-Fi and the low-end Basics "FB-lite" platform for developing markets with limited network infrastructure.


No alt text provided for this image

Apparently it's now being renamed Meta Connectivity - partly I guess because of the reorganisation and rebranding of the group overall, but also as a longterm part of the Metaverse landscape.

To me, that also indicates that the Metaverse is going to use multiple wireless (and wired) technologies - which aligns with Zuckerberg's view that it's more of a reinvention of the Internet/Web overall, rather than a particular app or experience.

Bandwidth-heavy? Or perhaps not....

One other thing needs to be considered around the Metaverse and connectivity. The immediate assumption is that such a "rich" environment, either full-virtual or overlaid onto a view of the real world, will need lots of data - and therefore the types of bandwidths promised by 5G. If we all use Metaverse devices to project "virtual TV screens" onto virtual surfaces, it will use lots of capacity, supposedly.

But it strikes me that avatars (even photo-realistic ones) & 3D reconstructions of real-world scenes will likely need less bandwidth than actual video. Realtime rendering will likely be done on-device in most cases, just sending the motion/sensor data or metadata about objects over the network.

Clearly this will depend on the exact context and application, but if your PC or phone or headset has a model of your friend's virtual house, or your virtual conference room - and all the objects and people/avatars in it - then it doesn't actually need realtime 4K video feeds to show different views.

In addition, the integration of eye-tracking allows pre-emptive downloads or actions, so "pseudo-latency" can seem very low, irrespective of the network's actual performance. If the headset sees you looking at a football, it can start working on the trajectory of a kick 10's or even 100's of milliseconds before you move your virtual leg.

That said, the sensor data uplink & motion control downlink will need low latency, but I suspect that will be more about driving localised breakout and peering rather than genuine localised compute. If you're in a hybrid conference with distant colleagues, the main role for edge-computing is to offload your data to the nearest Internet exchange with as few hops as possible.

(Some of the outdoor scenes in the Meta video from Connect seem rather unrealistic. They show groups of people playing table tennis and a virtual basketball match with "friends on the other side of the world", which would involve some interesting issues with the speed of light and how that would impact latency.)

Conclusion

In a nutshell - no, the Metaverse isn't the killer app for 5G.

The timelines align between the two, so where 'Verse apps are used on smartphones they'll increasingly use 5G if it's available and the user is out-and-about. But that's correlation, not causation. Those smartphones will typically be connected via Wi-Fi when at home, school or work. I suspect the main impact on smartphones will be on the need for better 3D graphics capability and enhanced sensors and cameras, rather than the network side.

Will we see some headsets or glasses with built-in cellular radios, some with 5G support? Sure, there will certainly be a few emerging in coming years, especially for enterprise / private network use. I'd expect field-workers, military, or industrial employees to exploit various forms of AR and VR in demanding situations well-suited to cellular, although many will tether a headset or glasses to a separate modem / module to reduce weight.

Many devices will also include various other wireless technologies too - Wi-Fi, Bluetooth, maybe Thread/Matter, UWB and so on.

But if anything, I suspect that the Metaverse may turn out to be the killer app for WiFi7, especially for home and office usage. That doesn't mean that 5G won't benefit as well - but I don't see it as a central enabler, given the probable heavy indoor bias of the main applications. (I don't think that cryptocurrency or edge-computing are key enablers either, but those are debates for another day)

(This article was initially published on my LinkedIn Newsletter - click here to see the original, plus comment thread. And please subscribe!)

#Metaverse #Facebook #Meta #AugmentedReality #VirtualReality #5G #WiFi #MixedReality #Mobile #Wireless #Devices #Gaming #Collaboration #HybridWorking

Sunday, May 09, 2021

Telcos: Stop Thinking You're Always the Leading Actor

Hubris: "an extreme and unreasonable feeling of pride and confidence in yourself"

I've followed developments in the telecoms industry for over 25 years. I've seen positives (eg broadband, SMS, LTE) and negatives (UMA, RCS) as well as a shifting landscape of regulation, the rise of the Internet, and multiple generations of network technology and services infrastructure.

Undoubtedly, both fixed and mobile networks have added massively to economies, society and our current way of life. It's understandable that network operators - and their vendors and governments - feel proud of their legacy and want to perpetuate it.

Yet it's possible to take this too far. Even beyond obviously-silly pronouncements such as "5G is as important as electricity", there remains a constant thread among the telecoms industry that it is absolutely central to all future developments, and that the network's finely-engineered QoS mechanisms are the wellspring of technology-derived value, as well as pivotal to future GDP and world happiness.

But while self-belief and aspiration is helpful, arrogance and self-delusion is not.

 



Starring role, or supporting cast?

There is an assumption that the (public, traditional) network is always the leading actor in any movie about Industry 4.0, IoT, smart homes, AI, pandemic recovery & the "new normal", combating climate change, or creating new modes of communications and entertainment like AR/VR.

And yet in reality, the telecom network - especially public 5G - is often going to be a supporting actor. Or perhaps just have a walk-on role, or be relegated to an extra who gets dubbed in a different language.

You can almost imagine a C-list celebrity arriving at a busy party and shouting: "Guys, guys! Listen up! You can get rid of all your old stuff, all your Internet apps, all your legacy Industry 3.0 gear... just use our new [Technology X] instead, and we'll offer it all with a nice monthly per-GB subscription. You can even buy a slice!"

Heads swivel. Eyes roll. People refill their glasses & continue their conversations.

A bit more realism and humility is required. Telecoms isn't always the star of the show, and neither does it write the screenplay for the rest of the infrastructure or solution.

That doesn't mean it lacks value, or has a limited opportunity - but that it has to play nicely alongside others... and accept that the director and producer have other priorities to focus on - and a wide choice of alternatives to cast in the same roles.

Leaving the acting analogy aside, it's also important to understand that the nature of the word "telco" is itself changing. Looking out to 2030, the "telco of the future" isn't like todays - there won't just be 3-4 national MNOs and a handful of converged/fibre/fixed-line operators. There will be a vast diversity of service provider types and private/community networks. I've written before about the "new telcos" and this is a critical aspect for traditional ("legacy"?) operators to understand and even embrace.

This isn't just 5G-related

It's tempting to just see this as a problem with how 5G is being positioned and hyped. But while I discuss that below, it's far from being unique. This attitude has been around for years, and pervades the entire industry. Some examples of this mindset include:

  • Telcos consistently assume that "voice" means the same as "telephony", since they only do the latter. Telephony is just one voice application of hundreds - and a 140yr-old clunky and poorly-optimised one at that. This is why telcos don't have a foothold in voice assistants, critical comms, gaming voice, podcasts and so on - and get out-competed by cloud players for UCaaS and cPaaS. (For more: see my upcoming workshop series on the future of Realtime Comms, Voice & Video, starting May 19th)
  • 20 years ago, 3G networks were pitched as platforms for telco-created and telco-delivered videoconferencing, games, "value-added services" (ringtones, basically) and much more inside "walled gardens". The killer app was, in fact, plain vanilla Internet access - despite early dataplans trying to restrict the use of VoIP and IM.
  • Some 1980s & '90s telcos saw themselves as central to enterprises' telephony systems and pitched "Centrex" services - basically a precursor to today's cloud-based UCaaS. Most businesses decided that running their own PBXs was a better option - it fit with their internal organisation and operations much better.
  • Telcos' MEC edge-compute was supposed to take centre-stage against hyperscale cloud providers. Instead, MEC's main use is to host internal NFV or vRAN functions that run the network itself. Or enable some hyperscalers' own edge platforms on a wholesale basis, where they don't have other options. Meanwhile, edge-compute evolves in many other (non-telco) domains much faster, including on-device / gateway, or linked to non-3GPP technologies such as Wi-Fi and fibre.
  • RCS was initially supposed to replace all Internet-based messaging apps. Then its believers pivoted to pitch it as a universal B2C tool for mobile customer interactions. In reality, it's (at best) just another slow-moving messaging app with few users and no loyalty, or special features. It turns out to be channel #17 for consumers dealing with companies that don't merit downloading a proper app or which have a lousy website. RBM's best hope is for things like tickets from that 3rd-tier airline you're forced to use to get to an obscure airport, or ordering a new recycling bin from the local council's chatbot. It's competing with the browser, not apps or Internet messaging.
  • MNOs' public 5G with network-slicing was supposed to replace all the cumbersome enterprise network gear such as ethernet and Wi-Fi. There are still visions within obscure 3GPP work-groups about "5G LANs" and I still read and hear nonsense from the cellular industry about it replacing Wi-Fi at scale....
  • ... or alternatively, the new story is that the 5G core is going to be the centrepiece of all telecoms and networking - it'll control Wi-Fi, fixed broadband, satellite connectivity etc. on operators' terms and policies, of course. (See the Broadband Forum's rather Machiavellian efforts here - led unsurprisingly by behemoths like Verizon & Deutsche Telekom that want the core network as a "control point" all the way to end-devices in the home). Yes, maybe Wi-Fi can easily just slot into 5G's shiny new cloud-native core - but in reality, 99% of Wi-Fi has nothing to do with cellular networks, offload, or non-trusted / non-3GPP access
  • As I mentioned recently, the telecom industry tries to take 100% of the (carbon) credit for new technologies reducing energy consumption or emissions.

The ridiculous and judgmental term "OTT" exemplifies this - creating a them-and-us fallacy of "web" companies using "our" pipes. Never mind the fact those technology companies build their own infrastructure, and invest billions in R&D for everything from AI to chip design. Or that all telcos themselves deploy "OTT" apps, websites and Internet-delivered functions.

To use a more sociological phrasing, many network operators still have a "sense of entitlement". They feel that they should be running everything from voice and video communications to networked entertainment, smart homes, or B2B commerce and industrial automation.

This attitude extends into public policy, and discussions on topics like spectrum, where there is a sense of exerting "license privilege". There is often an attempt to exert control before earning it. This is different to (say) Apple's control of its AppStore.

(*Sidenote [And apologies to my clients if this stings!]:if you work in telecoms & talk casually about "OTTs" for anything other than TV streaming, you should be fired, and so should your boss. It's not only wrong, it's flat-out ignorant and damaging. It indicates gross incompetence. It's not quite a "hate crime" but it is a them-and-us divisive term for a distinction that simply does not exist).

Actions have consequences

There are several reasons why this problem is more than just "attitude" or normal marketing-related hyperbole. It directly translates to business successes and failures.

  • Many telco technologies don't just benefit from n-squared network effects, but depend on them. They degrade "non-gracefully" if they're not ubiquitous - which means they need to be adopted by other telcos at the same time. Messaging is a good example - at 50% uptake, across 50% of operators that implement a new standard, there's a high % chance that two people on different networks won't be able to communicate, especially internationally. There's no focus on saturating small niches, or communities of interest, then expanding over time.
  • Telcos spend so much time envisioning themselves as "platforms" that they fail to realise that pretty much every tech platform evolves from a great (and widely-used/loved) product. Google indexed the web & created a great seach function, before it started selling ads. Apple sold the iPhone for a while before launching the AppStore. It also had a loyal base of iPod users who wanted a music-phone, too. Amazon sold books before it launched AWS. All of them had platforms in mind earlier... but had to create a product before tuning the way the platform needed to behave for customers / developers.
  • The telecom industry always assumes that it will be a "net exporter" (or even pure exporter) of capabilities and APIs. It expects it will sell more "exposed functions" than it buys. It assumes a role at the top of the value chain, rather than the middle. This is starting to change now with the recognition of the role of buying public cloud services for virtualisation, but prior to that it just relied on Google Maps for "find the closest store", or credit-checking agencies for new subscriptions. Almost all successful tech businesses these days are more like trading hubs, importing AND exporting functions, APIs and data. The assumption that telcos will always be the OrchestratORS rather than OrchestratED is leading to an unrealistic world-view and poor decisions.
  • Conversations with regulators and governments try to amplify the supposed "special" status and reinforce the spurious divide with new telcos or Internet/tech firms. "We don't want to be dumb pipes, so please tax & regulate the clever people, because we can't compete". This might seem smart - and perhaps gets better access to new funds for rural coverage or pandemic recovery - but it also hampers and limits future options, for instance around international mergers and expansion. Domestic champions find it hard to live dual lives as global heroes.

What needs to change?

There needs to be a frank, honest discussion about "Telcos' place in the world", which works out how to transition from a world of a few licensed network operators per country, to one in which the landscape is much more complex and nuanced.

  • Position the term "telco" as a broader church & consider the needs/roles of the wider group. MNOs and fixed telcos are important, but not alone here. TowerCo's are telcos. Neutral Hosts are telcos. WISPs are telcos. MVNOs are telcos. Governments can act as telcos. Community networks are telcos. Consider them peers. Insist that GSMA, CTIA, ETNO and others treat all telcos equally and offer membership (and governance) on reasonable terms.
  • Don't push back against governments trying to enable new forms of competition and new entrants. Instead, exploit them. Offer reference designs for Open RAN internationally (see Rakuten). Launch Private 5G services in new countries with local spectrum (Verizon is doing this). Run MVNOs in other countries (Turkcell, China Mobile etc).
  • Internet, IT and industrial automation (OT) companies need to be seen as equal and equivalent peers too. Amazon, Microsoft, Google, Siemens, Honeywell, IBM, HPE, Tech Mahindra, NTT Data & many others will often own the customer relationship. Sometimes telecoms fits into their frameworks, and sometimes theirs' fits into telcos. Maybe there are roles for gatekeepers, but only where there is enough competition.
  • Telecom standards need to become much more "loosely coupled". The traditional insistence that a 5G radio needs a 5G core and IMS/VONR telephony needs to stop. 3GPP standards and interfaces should be mix-and-match. Rather than trying to push complex core networks into fixed broadband architectures, the industry should instead make core-optional lightweight variants of 5G RANs, or expose interfaces that make them controllable by enterprise IT, or a Wi-Fi platform.
  • Offer both complete solutions and sub-component services. Don't assume primacy - sell what customers want. Maybe enterprises want their own Private 5G, but would happily use telcos to do the installation and maintenance, or to enable roaming or as a provider of eSIM-aaS
  • Use 3rd-party infrastructure and connectivity where it makes sense - for instance on neutral host networks. Attempt to automate onboarding, and remove friction wherever possible. Accept national roaming if it means your customers get better access in remote places, or indoors.
  • Work out better metrics to measure the business & communicate these to investors and regulators. See this article on what metrics are especially poor.
  • Understand software and app developers' mindsets. They don't want to pay for "premium QoS" on a thousand networks. They want warning of congestion, and how to adjust their apps' demands - when/how to use on-device compute vs. cloud, which codecs and compression, and so on.
  • Stop thinking that phone calls (and worse, video calls) are perfect manifestations of communications, with just an upgrade every 10 years from circuit to VoLTE to VoNR. Why doesn't the dialler app get updated once a month with new features, or give the user more controls?
  • Look at alternatives to subscription business models. Why not an insurance-style annual premium? Or "dark spectrum" just like "dark fibre"? Or 100 others?
  • Invent more stuff. Spend money on R&D rather than sports TV rights. Much of the current angst comes from competing against tech firms that actually create products and services that people want to buy/use.
  • Have a much clearer policy and stance on buying/selling technology and services. Make using platforms effectively seem as important as creating platforms. This is starting to happen with cloud and Open RAN, but it's very slow.

It has been interesting to see that the most interesting - and lauded - new telcos have come from different backgrounds, and have different attitudes. Rakuten is a cloud/eCommerce company first and foremost. Dish started as a satellite TV provider. Jio's parent Reliance Industries is a broad conglomerate. Although not a new company, South Korea's SKT is part of the SK Group, which also has a broad set of non-telco assets.

To be fair, one area where telcos are taking a more hybrid position is around physical assets. Some are operators/co-owners of shared networks, some spin-out tower businesses, some sell dark fibre and some buy - or both in different places. Some use public colocation and data-centres, while others are looking at local offices as possible edge compute sites.

Conclusions

This undoubtedly comes across as a bit of a rant (and not for the first time...) but it's coming from a position of frustration. I've seen the same issues play out for years - and at the core is this attitude of entitlement that I mention above.

It's totally counterproductive, even if the inertia - and sense of history - is understandable.

Everyone wants to be the star, especially if they've been the lead actor for decades. But sometimes, the role just involves a couple of scenes. And often, it's just the cameo roles - if played well - that get the headlines after all.

[A quick plug again: my upcoming Future of Video & RTC workshop series is here]

Cross-Posted from my LinkedIn Newsletter Article (here). Please see comments there & Subscriber.

#telecom #5G #telco #cloud #technology #regulation #voice #edgecomputing

Wednesday, April 28, 2021

New: Future of Video & RTC Workshop Series, starting May 19th

 "Why do people make phone calls?"

... the opening question at my old Future of Voice workshops. 

 It stumped many attendees and also many of my telco consulting clients during private engagements.

Most just looked blank, or perhaps suggested "to speak to people?". To be fair, the answer isn't obvious. Which is rather odd, given the need or desire for phone calls is the basis for the entire industry.

Few people think broadly about "purpose" of communications. What is the participant trying to achieve? How does the service or application help them do that? How can it be improved? What are the real sources of value?

In reality, there are 100s of uses for phone calls: To get information. Catch up with a friend. Buy something. Complain. Get help. All deserve a different, optimised experience. Yet a phone call is basically a one-size-fits-all, common denominator product. 

Telco's don't do "voice". They just do "telephony" - a single 140-year old, clunky, unnatural, heavily-regulated voice applications

Instead, they should have considered the 1000s of types of voice communication that are NOT phone calls. Audio chat, push-to-talk, karaoke, voice assistants and so on. All designed for particular purposes, with user-interaction models and technology stacks. Some dependent on the network, some on apps, some on devices, some in learned human behaviour.

The same is happening now for video. It's more than just video conferencing.

It's training, collaboration, security, education, medicine, machine vision, infra-red, social broadcast or 1000s of other uses, applications & business models.

There are platforms, enablers & APIs. Developer tools & design & test capabilities. WebRTC is important but not alone.

If telcos, service-providers, cloud/platform players, developers, enterprises and investors really want to understand the value and timelines for future communications - they need to ask the real questions. Not get blinded by ancient standards, or regulatory mandates to measure things in "minutes".

RTC (realtime communications) is getting more complicated, diverse - and has huge opportunities, as well as risks to incumbent providers of old/poor products. We all know which are the good/bad WFH conferencing products, or messaging services these days. 

What does the future bring? New models for UCaaS & cPaaS? Innovative video services for the smart home? New audio drop-in chat apps? AR/VR conferencing? What are the impacts of 5G, edge-computing and AI?

So I'm announcing: 

A new 3-part / 2-timezone "Future of Video & RTC" workshop series with WebRTC maven Tsahi Levent-Levi from May 19th. Early-bird rates end soon.

 

Sign up here.


 

Tuesday, August 25, 2020

Voice: So much more than Phone Calls

 [Originally published on LinkedIn. Please subscribe to my new LinkedIn Newsletter here]

Trivia Question: When was the first example of network-based music streaming launched?

I'll bet many of you guessed that it was Spotify in 2006, or Pandora in 2000. Maybe some of you guessed RealAudio, back in 1995.

But the actual answer is over a century earlier. It was the Théâtrophone, first demonstrated in 1881 in Paris, with commercial services around Europe from 1890. It allowed people to listen to concerts or operas with a telephone handset, from another location across town. It even supported stereo audio, using a headset. It finally went out of business in the 1930s, killed by radio. Although by then, another form of remote audio streaming - Muzak, delivering cabled background music for shops and elevators - was also popular.


Why is this important? Because these services used "remote sound" (from the Greek tele+phonos) over networks. They were voice/audio communications services.

Yet they were not "phone calls".

Over the last century, we've started to use the words "voice communications", "telephony" and "phone calls" interchangeably, especially in the telecoms industry. But they're actually different. We often talk about "voice" services being a core component of today's fixed and mobile operators' service portfolios.

But actually, most telcos just do phone calls, not voice in general. One specific service, out of a voice universe of hundreds or thousands of possibilities. And a clunky, awkward service at that - one designed 100+ years ago for fixed networks, or 30+ years ago for mobile networks.

*Phone rings, interrupting me*

"Hello?"

"Oh, is that Dean Bubley?"

"Yes, that's me"

"Hi, I'm from Company X. How are you today?"

"I'm fine, thanks. How can I help you?"

... and so on.

It's unnatural, interruptive and often unwanted. A few years ago a 20-something told me some words of wisdom "The only people who phone me are my parents, or people I don't want to talk to". He's pretty much right. Lots of people hate unsolicited calls, especially from withheld numbers. They'll leave their phones on silent. (They also hate voicemails even more).

I used to go into meetings at operators and ask them "Why do people make phone calls? Give me the top 10 reasons". I'd usually get "to speak to someone" as an answer. Or maybe a split between B2B and B2C. But never a list of actual reasons - "calling a doctor", "chatting to a relative", "politely speaking to an acquaintance but wishing they'd get to the point".

Now don't get me wrong - ad-hoc, unscheduled phone calls can still be very useful. Person A calling Person B for X minutes is not entirely obsolete. It's been good to speak to friends and relative during lockdown, or a doctor, or a bank or prospective client. There's a lot of interactions where we don't have an app to coordinate timings, or an email address to schedule a Zoom call.

But overall, the phone call is declining in utility and popularity. It's an undifferentiated, lowest-common denominator form of communications, with some serious downsides. Yet it's viewed as ubiquitous and somehow "official". Why do web forms always insist on a number, when you never want to receive a call from that organisation?

Partly this relates to history and regulation - governments impose universal service obligations, release numbering, collect stats & make regulations about minutes (volume or price), determine interconnect and wholesale rates and so on. In turn, that has driven revenues for quite a lot of the telecom industry - and defined pricing plans.

But it's a poor product. There are no fine-grained controls - perhaps turning up the background noise-cancellation for a call from a busy street, and turning it down on a beach so a friend can hear the waves crashing on the shore. There's no easy one-click "report as spam" button. I can't give cold-callers a score for relevance, or see their "interruption reputation" stats. I can't thread phone calls into a conversation. Yes, there's some wizardry that can be done with cPaaS (comms platforms-as-a-service) but that takes us beyond telephony and the realm of the operators.

Beyond that, there's a whole wider universe of non-call voice (and audio) applications that operators don't even consider, or perhaps only a few. For instance:

  • Easy audioconferencing
  • Push-to-talk
  • Voice-to-text transcription (for consumers)
  • Voice analytics (e.g. for behavioural cues)
  • Voice collaboration
  • Voice assistants (like Alexa)
  • Audio streaming
  • Podcasts
  • Karaoke
  • One-way voice / one-way video (eg for a doorbell)
  • Telecare and remote intercom functions for elderly people
  • Telemedicine with sensor integration (eg ultrasound)
  • IoT integrations (from elevator alarms to smartwatches)
  • "Whisper mode" or "Barge-in" for 3-person calls
  • Stereo
  • De-accenting
  • Voice biometric security
  • Data-over-sound
  • In-game voice with 3D-positioning
  • Veterinary applications - who says voices need to be human?

There are dozens, maybe hundreds of possibilities. Some could be blended with a "call" model, while others have completely different user-interaction models. Certain of these functions are implemented in contact-centre and enterprise UCaaS systems, but others don't really fit well with the call/session metaphor of voice.

I've talked about contextual communications in the past, especially with WebRTC as an enabling technology, which allows voice/video elements to be integrated into apps and browser pages. I've also written before about the IoT integration opportunities - something which is only now starting to pick up (Disclosure: I'm currently working with specialist platform provider iotcomms.io to describe "people to process" and event-triggered communications).

But what irritates me is that the mainstream telecoms industry has just totally abdicated its role as a provider and innovator of voice services and applications. You only have to look at the mobile industry currently talking about Vo5G ("5G Voice") as a supposed evolution from the VoLTE system used with 4G. It's basically the same thing - phone calls - that we've had for over 100 years on fixed networks, and 30 years on mobile. It's still focused on IMS as a platform, dedicated QoS metrics, roaming, interconnection and so on. But it's still exactly the same boring, clunky, obsolescent model of "calls".

There was a golden opportunity to rethink everything for 5G and say "Hey, what *is* this voice thing in the 2020s? What do people actually want to use voice communications *for*? What interaction models and use-cases? What would make it broader & more general-purpose?" In fact, I said exactly the same thing around 10 years ago, when VoLTE was being dreamed up.

Nothing's changed, except better codecs (although HD voice was around on 3G) and lame attempts to integrate it with the even-worse ViLTE video and perennially-useless RCS messaging functions. The focus is on interoperability, not utility. Interop & interconnection is a nice-to-have for communications. Users need to actually like the thing first.

Some of the vendors pay lip-service to device integration and IoT. But unless you can tune the underlying user interface, codecs, acoustic parameters, audio processing, numbering/identity and 100 other variables in some sort of cPaaS, it's useless.

I don't want a phone call on a smartwatch - I want an ad-hoc voice-chat with a friend to ask what beer he wants when I'm at the bar. I want tap-to-record-and-upload of conversations, from my sunglasses, when someone's trying to sell me something & I suspect they're scamming me. I want realtime audio-effects like an audio Instagram filter that make me sound like I'm a cartoon character, or 007. (I don't want karaoke, but I imagine millions do)

So remember: the telecoms industry doesn't do "voice". It just does one or two voice applications. VoLTE is actually ToLTE. It's not too late - but telcos and their suppliers need to take a much broader view of voice than just interoperable PSTN-type phone calls. Maybe start with Théâtrophone 2.0?

This post was first published via my LinkedIn Newsletter - see here + also the comment stream on LI

#voice #telecoms #volte #phone #telephony #IMS #VoLTE #telcos #cPaaS #conferencing

If you're interested in revisiting your voice strategy, get in touch via email or LinkedIn, to discuss projects, workshops and speaking engagements. We can even discuss it by phone, if you insist.

Saturday, September 09, 2017

Huawei Connect: IT services, Enterprise Cellular, video analytics, AI and more

I spent most of last week in Shanghai, attending Huawei's Connect conference and trade show. It was a good chance to get a deep-dive into the company's enterprise activities, as well as get my head around China's broader trends and influences around the technology sector.

I normally engage with Huawei through its analyst relations function, but this trip was organised by a different team. The company apparently considers me a "KOL" ("key opinion leader"), which is a rather diffuse bucket used for a mix of outspoken independent analysts, public-facing academics, video/social bloggers and assorted others. I'm not sure I set out to lead opinions, but I'm certainly happy to voice my own.

(Unlike the analyst events I usually attend, the KOL group isn't really made up of direct competitors, so there's a more collegiate atmosphere - and a very lively WeChat group, partly with logistics about meeting times/locations but also sharing photos or thoughts about the event).

Connect is mostly driven by Huawei's enterprise business unit, which is growing fast (about $6bn revenues in 2016, up 47% [link]), and focuses on cloud and big "infrastructure-led" IT and networking projects. So sectors like smart cities, advanced manufacturing, oil and gas IoT, systems for transport sectors like rail and ports and so on. There's a heavy emphasis on IoT platforms and networks, cloud and storage, video/image surveillance analysis and a lot of AI. 

It clearly intends to be a very significant player in its chosen sectors, using its existing high IT profile in China, plus its global telecom footprint, as a springboard for other international ICT theatres. Unlike Europe, North America and India, China has few global-scale IT companies, especially in systems integration or outsourcing. The closest to a "Chinese version of IBM" is probably ChinaSoft, which has a deep partnership with Huawei anyway, and in which Huawei owns a significant shareholding.

Thinking more about technology-sector comparables, very few have a similar blend of infrastructure/network/telecom expertise, systems integration/services scale and cloud capabilities. Given Ericsson's recent announcements of pulling back on direct enterprise-related initiatives to focus on CSPs and its Cisco partnership as channels (a strategic error, I feel), it's only really Nokia and maybe NEC that have the scope to push the same big-infrastructure enterprise "ICT" vision, although even it doesn't have the full-scale IT services business that Huawei does. Perhaps there's yet more scope for consolidation between traditional IT companies and networks. (Ericsson+IBM? Nokia+HP? NEC+Tata? Who knows....)

One other thing stood out about the event: there was very little spoken about telco networks, Huawei's main business, or the synergies between that business unit and its faster-growing enterprise sibling. 

There was much more about robots and face-recognition than network-slicing and NFV. The main mention of IMS that I saw was in the context of critical communications for public safety, eg push-to-talk. The X-Labs group assessing possible future 5G use-cases was talking about connected drones, or cloud-integrated video-enabled helmets for the blind. There was a "carrier" section in the vertical-industries show hall, but that seemed mostly focused on cloud solutions for telcos.

Conspicuously, there was almost no reference to delivery models for network or IoT capabilities for enterprises. There was no assumption that everything would be provided "as a service", or in particular, delivered by a CSP. There was tacit recognition that some organisations want to own their own infrastructure / private clouds, some may go to a specialist integrator (eg an automation/IoT specialist like Honeywell or GE), and some might use an arm of a telco. For example, T-Systems, Deutsche Telekom's IT unit, was there talking about a Huawei-based storage cloud, deployed for CERN, the leading nuclear and particular research institution on the Swiss/French border.

Huawei also offers its own cloud services, but is quite self-effacing about it, only wishing to become "one of the top 5 clouds" (presumably along with Amazon, Google, IBM and maybe Microsoft - which it also partners) and saying that "1% is enough for us". I don't think Jeff Bezos is going to have too many sleepless nights, although Alibaba, Cisco and Oracle may have different opinions on the top tier's members, the former especially in China itself.


In terms of specific takeouts on my normal coverage areas, a few things stood out:
  • Enterprise Cellular: This was everywhere at the event, under the brand eLTE. This is a sort of pre-cursor to a MuLTEfire / CBRS model of non-carrier cellular networks. There's a quite large eLTE ecosystem, especially around public-safety networks but also manufacturing, transport and other verticals. There was a demo of a robot connected with private cellular. There are 3 variants:
    • An unlicensed LTE-U version that doesn't need a licensed "anchor" like LAA, so can be deployed by any organisation
    • A licensed-band version, where organisations (such as law-enforcement or utilities) can manage to get dedicated spectrum by one means or another
    • A narrowband version, which is essentiially NB-IoT in unlicensed bands such as ISM spectrum (which in China, is in the 500MHz range, or 900MHz in the US)
    • All of these were targeted at industry verticals. There wasn't any mention of other use-cases like neutral-host providers, hybrid MNO/MVNOs, mesh networks, or consumer-oriented plays. 
    • There wasn't any explicit mention of shared-spectrum models like CBRS, but it seems to fit under the second category.
    • This all fits nicely with the recent work I've done on private/enterprise cellular. It will be an ongoing theme as it is clearly "happening", including presentations at a few upcoming regulatory conferences, and another workshop with Caroline Gabriel in London on Dec 1 (link)
 

  •  IoT networks: There was a huge emphasis on NB-IoT around the event, as well as broadband 4.5G/5G options for drones, connected vehicles and more demanding applications. I didn't see an mention of LoRA, SigFox, or even LTE-M or Cat1 though, but WiFi and ZigBee cropped up on various slides. Some interesting examples of NB-IoT deployments, notably for cities, or specific OEM-led integrations such as China's booming shared-bicycle sector.
  • Video and facial networks/analytics: This was a huge theme, as it bridges Huawei's key domains of mobile broadband, cloud services and AI. A major focus is "safe cities", especially using networked video cameras to manage traffic, enforce public safety - and track/spot individual people, whether that is missing children, criminals, or attendees at a trade show. (I joked on Twitter that Huawei had probably been tracking people around the event itself - only for the next slide to reveal that it had been doing exactly that). Missing from most of the material was much mention of privacy - which appears to be less of a concern in China than it would be in much of Europe. That said, we may be fighting a losing battle on that front, as this week's Economist cover & feature articles on face-recognition point out (link).
 
 
 
  • AI: Beyond video-analysis, a central thrust of the event was around machine-learning, graph analysis, image-recognition and other forms of AI.  I didn't get a chance to go into too much depth on this, but it's pretty clear this is central to Huawei's cloud ambitions, and probably will link into carrier-domain services like smart-home / personal voice assistants as well as "big data" corporate applications
  • We also had a briefing with the handset unit, which discussed the new Kirin AI-oriented chip which includes a neural processing element, as well as CPU, GPU and DSP. This should enable better and more power-efficient local classification of images, without the need to send all data to the cloud. This fits into my ongoing debate on whether 5G's low-latency business case might be undermined by more edge-processing. (link)
  • WiFi: Although not as big an emphasis as 4G/5G, Huawei nevertheless had a fair bit of WiFi on display, particularly for large-scale deployments in cities or large public venues like sports stadia. It also had an interesting hybrid WiFi / IoT networking unit, which for now focuses on Bluetooth, RFID and ZigBee but I guess could incorporate NB-IoT (or its eLTE variant), or even LoRa if a client wanted.
  • UC/UCaaS: Although not a major focus of the event (itself quite telling) there was a fair bit of unified communications, conferencing and even cPaaS around the show. There was a Broadsoft-style UC platform for operators, and various tools for multi-party meetings. It's not obvious that Huawei is aiming to be a Twilio / Tokbox-style platform provider though, although it does have APIs (including WebRTC) for embedding communications in apps and websites. I didn't see any signs of a Slack/Spark/HipChat rival. Notably, Huawei is partnering Microsoft on Office365, so may not launch its own full UcaaS direct-to-enterprise product. 
  • I liked one partner booth in particular "Call Cloud", which uses a crowd-style / sharing economy approach to sourcing customer-service reps, with in-app video. It apparently has 7 million (!) people signed up as potential providers of informal information or support.

Overall, an interesting few days for me, exploring a side to Huawei I hadn't seen before. It's always hard to get a full perspective from a single-vendor event, but it struck me as one of the only real, fully-encompassing examples I've seen of an acronym I normally dislike - ICT. That said, some more candour about positioning vs. competitors would have been welcome. We all know who they are - so descriptions of differentiation would have been useful, even if rose-tinted.

It's also brought home to me how important it is to have a captive market to drive scale, which can then improve adoption rates (and prices) elsewhere. Amazon does it with AWS - its own huge retail business is an "anchor tenant" which helps create traffic volumes that then became reinforced by third parties' cloud usage. Huawei appears to do something similar with domestic government and enterprise business - millions of CCTV cameras, or large-scale city networks, or local IoT uses are helping it exploit pre-existing scale and experience, and then apply elsewhere. There is also a sensible approach to partnering, for example around IoT, with the likes of GE collaborating on distinct parts of the market.

One final comment: the layout of the trade show was excellent. One hall was organised per-vertical, with sections on Manufacturing, Public Safety, Oil & Gas, Finance etc. The other hall was per-technology, with sections on Cloud, eLTE, WiFi, NB-IoT, Developers and so on. I wish other events were similarly well-structured.

Tuesday, July 11, 2017

Sensors: implications for wireless connectivity & video communications

Quick summary
  • Sensor technology is complex, diverse, fascinating & fast-evolving.
  • There are dozens of sensor types & technologies.
  • Nobody believes the 20-50bn devices forecasts, especially if they are based on assumptions that 1 sensor = 1 device
  • Some sensors improve the capabilities of already-connected devices, like phones or (increasingly) cars.
  • Some sensors enable creation of new forms of connected device & application.
  • Most sensors connect first via one or two tiers of local gateways, sub-systems or controllers, rather than directly connect to the Internet / cloud individually
  • While the amount of sensor-generated data is growing hugely, not all of this needs real-time collection and analysis, and so network needs are less-extreme.
  • Many industrial sensors use niche or unfamiliar forms of connectivity.
  • Genuine real-time controls often need sensors linked to "closed-loop" systems, rather than using Internet connections / cloud.
  • WiFi & short-range wireless technologies like Bluetooth & ZigBee are growing in importance. There is limited concern about using unlicensed spectrum
  • LoRa radios (sometimes but not always with LoRaWAN protocols) are growing in importance rapidly
  • Cellular connectivity is important for certain (especially standalone, remote/mobile & costly) sensor types, or sensor-rich complex objects like vehicles. 
  • The US seems more keen on LTE Cat-1 / Cat-M than NB-IoT for sensor-based standalone devices. Europe and Asia seem more oriented towards NB-IoT
  • There are no obvious & practical sensor use-cases that need 5G, but it will likely improve the performance / economics / reach of some 4G applications.
  • Camera / image sensors are becoming hugely important and diverse. These are increasingly linked to either AI systems (machine vision) or new forms of IoT-linked communication applications
  • "Ordinary" video sensors/modules are being supplemented by 3D, depth-sensing, emotion-sensing, 360degs, infra-red, microscopy and other next-gen capabilities.
  • AI and analytics will sometimes be performed on the sensor or controller/gateway itself, and sometimes in the cloud. This may reduce the need for realtime data transmission, but increase the need for batch transfer of larger files.
  • Conclusion: sensors are central to IoT and evolving fast, but the impact on network connectivity - especially new cellular 4G and 5G variants - is diffuse and non-linear.

Narrative
 
A couple of weeks ago I went to Sensors Expo 2017 in San Jose. This topic is slightly outside my normal beat, but fits with my ongoing interest in "telcofuturism", especially around the intersection of IoT, networks and AI. It also dovetails well with recent writing I've done on edge computing (link & link), a webinar [this week] and paper on IoT+video for client Dialogic (link), and an upcoming report I'll be writing on LPWAN for my Future of the Network research stream at STL Partners (link).

First things first: listening to some of the conference speeches, and then walking around the show floor, made me realise just how little I actually knew about sensors, and how they fit into the rest of the IoT industry. I suspect a lot of people in telecoms - or more broadly in wireless networking and equipment - don't really understand the space that well either.

For a start, there's a bewildering array of sensor types and technologies - from tiny silicon accelerometers that can be built into a chip (based on MEMS - micro-electromechanical systems), right up to sensors woven into large-scale fabrics, that can be used to make tarpaulins or tents which know when someone tries to cut them. There's all manner of detectors for gases, proximity, light, pressure, force, airflow, air quality, humidity, torque, electrical current, vibration, magnetic fields, temperature, distance, and so forth.

Secondly, a lot of sensors have historically been part of "closed-loop" systems, without much in the way of "fully-connected" computing, permanent data collection, networking, cloud platforms or analysis. 

An easy example to think about is an old-fashioned thermostat for a heating system. It senses temperature - and switches a boiler or radiator on or off accordingly - without "compute" or networking resource. This has been reinvented by Nest and others. Plenty of other sensors just interact with "real-time" systems - for example older cars' airbags, or motion-detection alarms which switch on lights.

In industry, a lot of sensors hook into the "real-time control" systems, whether that's for industrial production machinery, quality control, aircraft avionics or whatever. These often use fixed connectivity, with a bewildering array of network and interface types. It's not just TCP/IP or familiar wireless technologies. If you haven't come across things like Modbus or Profibus, or terms like RS485 physical connections, you perhaps don't realise the huge complexity and unfamiliarity of some of these systems. This is not telco territory.

This is important, as it brings in an entire new realm to think about. From a telco perspective, we're comfortable talking about the touch-points of networks and IT. We are don't often talk about OT or "operational technology". A lot of people seem to naively believe that we can hook up a sensor or a robot or a piece of industrial machinery straight to a 4G/5G/WiFi connection, then via Internet or VPN to a cloud application to control it, and that's all there is to it. 

In fact, there may well be one, two or three layers of other technology involved first, notably PLC units (programmable logic controllers) as well as local gateways. A lot of this is the intranet-of-things, not the Internet-of-things - and may well not even be using IP as most people in networking and telecoms normally think about it.

In other words, there's a lot more optionality around ISO layers - there are a broad range of sector-specific or proporietary protocols, that control sensors or IoT devices over a particular "physical layer". That contrasts with most users' (and telco-world observers') day-to-day expectations of "IP everywhere" and using HTTP and TCP/IP and similar protocols over ethernet, WiFi, 4G or whatever. The sensor world is much more fragmented than that.

These are some of the specific themes I noted at the event:
  • Despite the protocol zoo I've discussed, WiFi is everywhere nonetheless. Pretty much all the sensor types have WiFi connectivity options somewhere, unless they're ultra-low power. There's quite a bit of Bluetooth and ZigBee / other varieties of IEEE 802.15.4 for short-range access too.
  • Almost nobody seems bothered about the vagaries of unlicensed spectrum, apart from a few seriously mission-critical, time-critical applications, in which case they'll probably use fixed connections if they can. Bear in mind that a lot of sensors are actually fairly time-insensitive so temporary interference or congestion doesn't matter much. Temperatures usually only change over seconds / minutes, not milliseconds, for example. Bear in mind though, that this is for sensing (ie gathering data) not actuating (doing stuff, eg controlling machines or robots).
  • Most sensors send small bursts of data - either at set intervals, or when something changes. There are exceptions (notably camera / image sensors)
  • I saw a fair amount of talk about 5G (and also 4G and NB-IoT) but comparatively little action. Unlike Europe, the US seems more interested in LTE Cat-1 and Cat-M rather than NB-IoT. Cat-M can support VoLTE, which makes it interesting for applications like elder/child-trackers, wearable and building security. NB-IoT seems fairly well-suited to things like parking meters, environmental sensors, energy metering etc. where each unit is comparatively standalone, and needs to link to cloud/external resources like payments.
  • There's also lot of interest in LoRa, both as a public network service (Senet was prominently involved), and also as privately-owned infrastructure. I think we're going to see a lot of private LoRa embedded into medium-area sensor networks. Imagine 100 moisture sensors for a farm, connected back to a central gateway on top of the barn, and then on to a wide-area connection (fixed or mobile) and a cloud-based application. The 100 sensors don't need a wireless "service" - they'll be owned by the farmer, or else perhaps the connectivity will be offered as a part of a broader "managed irrigation service" by the software company.
  • There's an interest in wireless connectivity to reduce regulatory burdens for some sensors. For example, to connect a temperature sensor in an area of an oil refinery with explosion risks, to a server in another building, requires all manner of paperwork and certification. The trenching, ducting and physical wire between them needs approval, inspection and so on. It's much simpler to do it with wireless transmitters and receivers.
  • A lot of the extra sensors getting connected are going to be bundled with existing sensors. Rather than just a vibration sensor, the unit might also include temperature and pressure sensors in integrated form. That probably adds quite a lot to the IoT billions number-count, without needing separate network links.
  • A lot of sensors will get built into already-connected objects. Cars and aircraft will continue to add cameras, material stress sensors, chemical analysis probes for exhaust gases, air/fluid flow sensors, battery sensors of numerous types, more accelerometers and so on. This means more data being collected, and perhaps more ways to justify always-on connections because of new use-cases - but it also means a greater need for onboard processing and "bulk" transfers of data in batches.
  • Safety considerations often come ahead of security, and a long way ahead of performance. A factory robot needs sensors to avoid killing humans first. Production quality, data for machine learning and efficiency come further down the list. That means that connecting devices and sensors via wider-range networks might make theoretical or economic sense - but it'll need to be seen through a safety lens (and often sector-specific regulation) first. Taking things away from realtime connections and control systems, into a non-deterministic IP or wireless domain, will need careful review.
  • Discussion of sensor security issues is multi-layer, and encouragingly pervasive. Plenty of discussions around data integrity, network protection, even device authenticity and counterfeiting.
  • Imaging sensors (cameras and variants of them) are rapidly proliferating in terms of both capabilities and reach into new device categories. 3D depth-sensing cameras are expected on phones soon, for example for facial recognition. 360-degree video is rapidly growing, for example with drones. Vehicles will use cameras not just for awareness of surrounding, but also to identify drivers or check for attentiveness and concentration. Rooms or public-spaces will use cameras to count occupancy numbers or footfall data. New video endpoints will link into UC and collaboration systems "Sensed video" will need greater network capacity in many instances. [I am doing a webinar with Dialogic about IoT+video on July 13th - sign up here: link]
  • Microphones are sensors too, and are also getting smarter and more capable. Expect future audio devices to be aware of directionality, correct for environmental issues such as wind noise, recognise audio events as triggers - and even do their own voice recognition in the sensor itself.
  • Textile and fabric sensors are really cool - anything from smart tarpaulins for trucks to stop theft, through to bandages which can measure moisture and temperature changes, to signal a need for medical attention. 
  • There's a lot of modularity being built into sensors - they can work with multiple different network types depending on the use-case, and evolve over time. A vibration sensor module might be configurable to ship with WiFi, BLE, LoRa, NB-IoT, ZigBee and various combinations. I spoke to Advantech and Murata and TE Connectivity, among others, who talked about this.
  • Not many people seemed to have thought about SIMs/eSIMs much, at a sensor level. The expectation is that they will be added by solution integrators, eg vehicle manufacturers or energy-meter suppliers, as needed.
  • AI will have a range of impacts both positive and negative from a connectivity standpoint. The need for collecting and pooling large volumes of data from sensors will increase the need for network transport... but conversely, smarter endpoints might process the data locally more effectively, with just occasional bulk uploads to help train a central system.
Overall - this has really helped to solidify some of my thinking about IoT, connectivity, the implications for LPWAN and also future 4G/5G coverage and spectrum requirements. I'd recommend readers in the mainstream telecom sector to drop in to any similar events for a day or two - it's a good way to frame your understanding of the broader IoT space and recognise that "sensors" are diverse and have varying impacts on network needs.